Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Как оценивается опасность поражения человека током электроустановки в электросетях различной конфигурации. Схемы включения человека в электрическую сеть Схемы включения человека в сеть

Схемы включения человека в цепь тока могут быть различными:

· между двумя проводами;

· между проводом и землей;

· между двумя проводами и землей одновременно и т.п.

Однако наиболее характерными являются первые две схемы. Применительно к трехфазным сетям переменного тока первую схему обычно называют двухфазным включением, а вторую – однофазным.

Двухфазное включение, т.е. прикосновение человека одновременно к двум фазам (рис. 11.3.), как правило, более опасно, чем однофазное, поскольку к телу человека прикладывается наибольшее в данной сети напряжение – линейное, и поэтому через человека пойдет больший ток, сила которого определяется по формуле:

где I ч – сила тока, проходящего через тело человека, А; U л = 1,73 U ф – линейное напряжение, т.е. напряжение между фазными проводами сети, в; U ф – фазное напряжение, В; R ч – сопротивление тела человека, Ом.

Рис. 11.3 Схема двухфазного включения

человека в цепь тока в трехфазной сети

Нетрудно видеть, что при двухфазном включении ток, проходящий через человека, практически не зависит от режима нейтрали сети, следовательно, двухфазное включение является одинаково опасным в сети как с изолированной, так и с заземленной нейтралями.

Однофазное включение происходит значительно чаще, нo оно менее опасно, чем двухфазное, поскольку напряжение, под которым оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза. Кроме того, на значение этого тока влияют также режим нейтрали источника тока, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

В сети с заземленной нейтралью (рис. 11.4) последовательно с сопротивлением тела человека (R ч) оказываются включенными сопротивление обуви (R об), сопротивление пола (R n) и сопротивление заземления нейтрали источника тока (R о).

Рис. 11.4 Схема однофазного включения человека в цепь тока в трехфазной четырехпроводной сети с заземленной нейтралью

С учетом этих сопротивлений сила тока (I ч), проходящего через человека, будет отделяться по формуле:

I ч = ,

где R ч – сопротивление тела человека, Ом; R об – сопротивление обуви, Ом; R n – сопротивление пола, Ом; R о – сопротивление заземления нейтрали, Ом.

В сети с изолированной нейтралью (рис.


11.5.), ток, проходящий через человека, возвращается к источнику тока через изоляцию проводов, которая обладает большим сопротивлением. Значение силы тока, проходящего через человека, определяется для этого случая по формуле:

I ч = ,

где R из – сопротивление изоляции одной фазы сети относительно земли, Ом.

В сети с изолированной нейтралью условия безопасности находятся в прямой зависимости не только от сопротивления пола и обуви, но и от сопротивления изоляции проводов относительно земли: чем лучше изоляция, тем меньше ток, протекающий через человека.

Рис. 11.5 Схема однофазного включения человека в цепь тока в трехфазной сети с изолированной нейтралью

Таким образом, при прочих равных условиях однофазное включение человека в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью. Этот вывод справедлив дня нормальных (безаварийных) условий работы сети. В случае же аварии, когда одна из фаз замкнута на землю, сеть с изолированной нейтралью может оказаться более опасной, так как вследствие старения изоляции, увлажнения и при других неблагоприятных условиях сопротивление изоляции снижается. В результате этого напряжение между любой неповрежденной фазой и землей может увеличиться с фазного до линейного, в то время как в сети с заземленной нейтралью напряжение неповрежденных фаз относительно земли практически не возрастает, т.е. остается в пределах фазного.

Таким образом, безопасность человека обеспечивается высоким качеством изоляции, которое контролируется в процессе профилактических испытаний. Периодический контроль изоляции заключается в том, чтобы определить сопротивление изоляции каждой фазы относительно земли и между фазами на каждом участке, между двумя последовательно установленными предохранителями, аппаратами или за последним предохранителем.

Электрическая изоляция силовой или осветительной электропроводки считается достаточной, если ее сопротивление между проводом каждой фазы и землей, или между разными фазами на участке, ограниченном последовательно включенными плавкими предохранителями, составляет не менее 0,5 МОм (согласно правилам устройства электроустановок).

Поражение человека током в результате электрического воздействия, т. е. прохождения тока через человека, являются следствием его прикосновения к 2-м точкам электрической цепи, между которыми существует некоторое напряжение. Опасность такого прикосновения оценивается, как известно, током, проходящим через тело человека или напряжением, под которым он оказывается. Следует отметить, что напряжение прикосновения зависит от ряда факторов: схемы включения человека в электрическую цепь, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, а также емкости токоведущих частей относительно земли и т. п.

Следовательно, указанная выше опасность не является однозначной: в одном случае включение человека в электрическую цепь будет сопровождаться прохождением через него малых токов и будет не очень опасным, в других случаях токи смогут достигать значительных величин, способных привести к смертельному исходу. В настоящей статье рассматривается зависимость опасности включения человека в электрическую цепь, т. е. значения напряжения прикосновения и тока, протекающего через человека, от перечисленных факторов.

Эту зависимость необходимо знать при оценке той или иной сети по условиям техники безопасности, выборе и расчёте соответствующих мер защиты, в частности заземления, зануления, защитного отключения, устройств контроля изоляции сети и т. п.

При этом во всех случаях, кроме особо оговоренных, будем считать, что сопротивление основания, на котором стоит человек (грунт, пол и пр), а также сопротивление его обуви незначительны и поэтому их можно принять равными нулю.

Итак, наиболее характерными схемами включения человека в электрическую цепь при случайном прикосновении к токоведущим проводникам являются:

1. Включение между двумя фазными проводниками цепи,

2. Включение между фазой и землей.

Само собой, во втором варианте предполагается, что рассматриваяемая сеть электрически связана с землёй за счёт, например, заземления нейтрали источника тока или по причине плохой изоляции проводов относительно земли, либо же по причине наличие между ними большой ёмкости.

Двухфазное прикосновение считается наиболее опасным, поскольку в этом случае к телу человека приложено линейное напряжение 380 вольт, а проходящий через тело ток не зависит от схемы сети и режима её нейтрали.

Двухфазные прикосновения происходят очень редко и связаны в основном, с работой под напряжением:

На электрощитах, сборках и ВЛ;

При использовании неисправных средств индивидуальной защиты;

На оборудовании с неограждёнными токоведущими частями и т. п.


Однофазное прикосновение обычно считается менее опасным, поскольку проходящий в этом случае через человека ток ограничен влиянием ряда факторов. Но оно случается на практике намного чаще двухфазного. Поэтому темой данной статьи является анализ только случаев однофазного прикосновения в рассматриваемых сетях.

При поражении человека электрическим током необходимо принять меры к освобождению пострадавшего от тока и немедленно приступить к оказанию ему первой помощи.

Освобождать человека от действия тока необходимо как можно быстрее, но при этом надо соблюдать меры предосторожности. Если пострадавший находится на высоте, должны приниматься меры по предупреждению его падения.

Прикосновение к человеку, находящемуся под напряжением , опасно, и при ведении спасательных работ необходимо строго соблюдать определенные предосторожности от возможного поражения током лиц, проводящих эти работы.

Наиболее простым способом освобождения пострадавшего от тока является отключение электроустановки или той ее части, которой касается человек . При отключении установки может погаснуть электрический свет, поэтому при отсутствии дневного света необходимо иметь наготове другой источник света - фонарь, свечу и т. д.

После освобождения пострадавшего от тока необходимо установить степень поражения и в соответствии с состоянием пострадавшего оказать ему медицинскую помощь. Если пострадавший не потерял сознание, необходимо обеспечить ему отдых, а при наличии травм или повреждений (ушибы, переломы, вывихи, ожоги и т. д.) необходимо оказать ему первую помощь до прибытия врача или доставить в ближайшее лечебное учреждение.

Если пострадавший потерял сознание, но дыхание сохранилось, необходимо ровно и удобно уложить его на мягкую подстилку - одеяло, одежду и т. д., расстегнуть ворот, пояс, снять стесняющую одежду, очистить полость рта от крови, слизи, обеспечить приток свежего воздуха, дать понюхать нашатырный спирт, обрызгать водой, растереть и согреть тело.

При отсутствии признаков жизни (при клинической смерти отсутствует дыхание и пульс, зрачки глаз расширены из-за кислородного голодания коры головного мозга) или при прерывистом дыхании следует быстро освободить пострадавшего от стесняющей дыхание одежды, очистить рот и делать искусственное дыхание и массаж сердца.

К таким заболевания, отягощающим исход электротравмы относятся: повышение функции щитовидной железы, многие заболевания нервной системы, стенокардия. Особенно надо отметить влияние алкогольного опьянения. Кроме того, что человек в состоянии алкогольного опьянения чаще совершает ошибки и получает электротравму, у него, вследствии алкогольной интоксикации, центральная нервная система утрачивает свою регулирующую роль в управлении дыханием и кровообращением, что значительно отягощает исход поражения.

Включение человека в цепь электрического тока

Причины включения. Человек включается в цепь электрического тока при непосредственном контакте тела с токоведущей частью электроустановки, находящейся под напряжением. Обычно это происходит по халатности или в результате ошибочных действий человека, а также из-за неисправности электроустановок и технических средств защиты. К таким случаям, например, относятся следующие:

Прикосновение к токоведущим частям, находящимся под напряжением, в предположении, что они обесточены;

Прикосновение во время ремонта, чистки или осмотра к ранее обесточенным токоведущим частям, но на которые посторонним лицом ошибочно подано напряжение или произошло самопроизвольное включение неисправного пускового устройства;

Прикосновение к металлическим частям электроустановок, которые обычно не находятся под напряжением, но оказались под напряжением относительно земли из-за повреждения электрической изоляции или других причин (замыкание на корпус);

Возникновение шагового напряжения на поверхности токопроводящего основания (пола), по которому проходит человек; и др.

Схемы включения. Человек может включиться в цепь электрического тока, прикоснувшись к одной фазе электроустановки, находящейся под напряжением, одновременно к двум фазам или к нулевому защитному проводнику и фазе. Соприкосновение с нулевым защитным проводником безопасно (рис.2, а, I), остальные случаи влекут за собой серьезные последствия.

Рис. 2. Схемы путей прохождения электрического тока через тело человека: а – прикосновение к проводам; б – возникновение напряжения прикосновения; в – Возникновение шагового напряжения; I-прикосновение к нулевому проводу; II – прикосновение к фазовому проводу; III – прикосновение к фазовому и нулевому проводам; IV – прикосновение к фазовым проводам; 0 – нулевой провод; 1, 2, 3 – фазные провода; 4 – нейтральная точка; 5- одиночный заземлитель (электрод); А, Б, В- электроустановки

Однофазное (однополюсное) прикосновение (рис.2, а, II и III) происходит наиболее часто при замене ламп и уходе за светильниками, смене предохранителей и обслуживании электроустановок и т.п. В системе с заземленной нейтрально человек окажется под фазным напряжением Uф (в В), которое меньше линейного Uл:

Соответственно меньше будет и величина фазного тока, проходящего через тело человека. Если же человек при этом надежно изолирован от земли (обут в диэлектрические калоши, пол сухой и нетокопроводящий), то однофазное прикосновение опасности не представляет.

Двухфазное (двухполюсное прикосновение) прикосновение более опасно, потому что человек попадает под линейное напряжение (рис. 2, а, IV). Даже при напряжении 127 В и расчетной величине сопротивления тела человека 1000 Ом величина тока в цепи окажется смертельной (127 мА). При двухфазном прикосновении опасность поражения не уменьшится и в том случае, если человек надежно изолирован от земли (пола).

Двухфазные пркосновения происходят редко, обычно при выполнении работ под напряжением, которые строго запрещены.

При повреждении изоляции токоведущих частей и замыкании их на корпус электрооборудования может появиться значительный потенциал. Человек, прикоснувшийся в этом случае к корпусу электроустановки (рис.2, б), окажется под напряжением прикосновения Uп (в В)

где Iч – величина тока, проходящего через человека по пути «рука-нога», А; Rч – сопротивление тела человека, Ом.

Напряжением прикосновения называют разность потенциалов двух точек электрической цепи, которых одновременно касается человек, или падение напряжения в сопротивлении тела человека.

Напряжение прикосновения будет расти по мере увеличения расстояния между электроустановкой и заземлителем, достигая максимума на расстоянии 20 м и более. При падении фазного провода на поверхности земли возникает зона растекания тока (рис.2, в).

Человек, проходящий через эту зону, окажется под шаговым напряжением (разность потенциалов) между двумя точками цепи тока, находящихся один от другой на расстоянии шага (0,8 м). Наибольшее шаговое напряжение будет около точки замыкания и, постепенно уменьшаясь, на расстоянии 20 м снизится до нуля.

Не следует приближаться к упавшему проводу ближе чем на 6-8 м. В случае необходимости подхода следует обесточить провод или надеть диэлектрические галоши (боты).

Психо-эмоциональная настороженность – «фактор внимания» при работе с электротоком

Формирование у работающих психо-эмоциональной настороженности, «фактор внимания» при работе с электротоком – важнейшие условие личной профилактики электротравматизма. Этот фактор основывается на знаниях физиологического действия электрического тока на организм при попадании пострадавшего в электрическую цепь.

В частности, решающую роль во многих случаях поражений играет «фактор внимания», т. е., по существу, тяжесть исхода поражения обуславливается в значительной степени состоянием нервной системы человека в момент поражения.

Необходимо, чтобы человек был «собран», что позволяет ожидать какого-либо события во время работы, требующей внимания.

Подобное утверждение правомерно в основном при поражении электрическим током напряжением 220-300 В. При больших напряжениях тяжелый исход чаще всего наступает от ожогов дугой. Здесь уже есть основания полагать, что опасность ожога растет практически линейно в зависимости от значения напряжения.

Фактор внимания, несомненно, вызывает мобилизацию защитных систем организма, усиливает через гипофизарно-адреналовую систему кровообращение сердечной мышцы, мозгового кровотока и делает их более устойчивыми к внешним раздражителям (электротравме).

При факторе внимания расстроить биосистему автоматического регулирования важнейших систем организма (центральной нервной системы, кровообращения, дыхания) значительно труднее.

Однако следует отметить, что роль фактора внимания пока еще не находит достаточного отражения в защитных мероприятиях при электробезопасности.

Но есть уверенность в том, что новые взгляды на электробезопасность живой ткани, дальнейшее изучение природы электрической активности организма человека позволяет раскрыть биофизику механизма поражения человека, что будет учтено в разработке мер по защите от действия электрического тока.

Мероприятия, обеспечивающие безопасную эксплуатацию электрооборудования

Технические способы и средства защиты, обеспечивающие электробезопасность, указываются с учетом: источника питания электроэнергией номинального напряжения, рода и частоты тока; режима нейтрали, вида исполнения; условий внешней среды; возможности снятия напряжения с токоведущих частей; характера возможного прикосновения человека к элементам цепи тока.

Случаи поражения человека током возможны лишь при замыкании электрической цепи через тело человека или, иначе говоря, при прикосновении человека не менее чем к двум точкам цепи, между которыми существует некоторое напряжение.

Опасность такого прикосновения, оцениваемая значением тока, проходящего через тело человека, или же напряжением прикосновения, зависит от ряда факторов: схемы включения человека в цепь, напряжения сети, схемы самой сети, режима ее нейтрали, качества изоляции токоведущих частей от земли, а также от значения емкости токоведущих частей относительно земли и т. п.

Схемы включения человека в электрическую цепь могут быть различными. Однако наиболее характерными являются две схемы включения: между двумя проводами и между одним проводом и землей (рисунок 13.5). Разумеется, во втором случае предполагается наличие электрической связи между сетью и землей.

Применительно к сетям переменного тока первую схему обычно называют двухфазным включением, а вторую - однофазным.

Двухфазное включение, т. е. прикосновение человека одновременно к двум фазам, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение - линейное, поэтому через тело человека пойдет больший ток (А):

I h = 1,73U ф /R h = U л /R h , 7)

где U л - линейное напряжение, т. е. напряжение между фазными проводами сети, равное , В; U ф - фазное напряжение, т. е. напряжение между началом и концом одной обмотки источника тока (трансформатора, генератора) или между фазным и нулевым проводами, В.

Нетрудно представить, что двухфазное включение является одинаково опасным в сети как с изолированной, так и с заземленной нейтралями. При двухфазном включении опасность поражения не уменьшится и в том случае, если человек надежно изолирован от земли, т. е. если он имеет на ногах диэлектрические галоши или боты, либо стоит на изолирующем полу или на диэлектрическом коврике.

Однофазное включение происходит значительно чаще, но является менее опасным, чем двухфазное, поскольку напряжение, под которым оказывается человек, не превышает фазного. Соответственно меньше оказывается ток, проходящий через тело человека. Кроме того, на значение этого тока влияют также режим нейтрали источника тока, сопротивление изоляции и емкость проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление его обуви и другие факторы.

Втрехфазной трехпроводной сети с изолированнойнейтралью силу тока (А), проходящего через тело человека, при прикосновении к одной из фаз сети в период ее нормальной работы (рисунок 6) определяют следующим выражением:

где Z - комплекс полного сопротивления одной фазы относительно земли, Ом, Z = r/(l + jwCr), r и С - соответственно сопротивление изоляции провода (Ом) и емкость провода (Ф) относительно земли (приняты для упрощения одинаковыми для всех проводов сети).

Ток в действительной форме составит, А:

. (9)

Если емкость проводов относительно земли мала, т. е. С » 0, что обычно имеет место в воздушных сетях небольшой протяженности,то уравнение (15) примет вид

Если же емкость велика, а проводимость изоляции незначительна, т. е. r » ¥, что обычно имеет место в кабельных сетях, то согласно выражению (5) сила тока (А), проходящего через тело человека, будет равна

, (11)

где х с - емкостное сопротивление, равное 1/wС, Ом; w - угловая частота, рад/с.

Из выражения (6) следует, что в сетях с изолированной нейтралью, обладающих незначительной емкостью между проводами и землей, опасность для человека, прикоснувшегося к одной из фаз в период нормальной работы сети, зависит от сопротивления проводов относительно земли: с увеличением сопротивления опасность уменьшается, поэтому очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние для своевременного выявления и устранения возникших неисправностей. Однако в сетях с большой емкостью относительно земли роль изоляции проводов в обеспечении безопасности прикосновения утрачивается, что видно из уравнений (5) и (7).

Втрехфазной четырехпроводной сети с заземленной нейтралью проводимость изоляции и ёмкостная проводимость проводов относительно земли малы по сравнению с проводимостью заземления нейтрали, поэтому при определении силы тока, проходящего через тело человека, касающегося фазы сети, ими можно пренебречь.

При нормальном режиме работы ее r и сила тока I h , проходящего через тело человека, будет (рисунок 7) равна:

I h = U ф /(R h + r 0), (12)

где r 0 - сопротивление заземления нейтрали, Ом.

Как правило, r 0 £ 10 Ом, сопротивление же тела человека R h не опускается ниже нескольких сотен Ом×м. Следовательно, без большой ошибки в уравнении (8) можно пренебречь значением r 0 и считать, что при прикосновении к одной из фаз трехфазной четырехпроводной сети с заземленной нейтралью человек оказывается практически под фазным напряжением U ф, а ток, проходящий через него, равен частному от деления U ф на R h . Отсюда следует, что прикосновение к фазе трехфазной сети с заземленной нейтралью в период нормальной ее работы более опасно, чем прикосновение к фазе нормально работающей сети с изолированной нейтралью (см. уравнения (6) и (8)).

Анализ опасности поражения электрическим током в различных сетях

Поражение человека электротоком возможно лишь при его непосредственном контакте с точками электроустановки, между которыми существует напряжение, или с точкой, потенциал которой отличается от потенциала земли. Анализ опасности такого прикосновения, оцениваемой величиной проходящего через человека тока или напряжением прикосновения, зависит от ряда факторов: схемы включения человека в электросеть, ее напряжения, режима нейтрали, изоляции токоведущих частей, их емкостной составляющей и т. п.


При изучении причин поражения током необходимо различать прямой контакт с токоведущими частями электроустановок и косвенный. Первый, как правило, возникает при грубейших нарушениях правил эксплуатации электроустановок (ПТЭ и ПТБ), второй - в результате аварийных ситуаций, например при пробое изоляции.


Схемы включения человека в электрическую цепь могут быть различными. Однако наиболее распространенными являются две: между двумя различными проводами - двухфазное включение и между одним проводом или корпусом электроустановки, одна фаза которой пробита, и землей - однофазное включение.


Статистика показывает, что наибольшее число электротравм происходит при однофазном включении, причем большинство из них - в сетях напряжением 380/220 В. Двухфазное включение является более опасным, поскольку в данном случае человек находится под линейным напряжением, при этом сила тока, проходящего через человека, составит (в А)


где Uл - линейное напряжение, т.е. напряжение между фазными проводами, В; Uф - фазное напряжение, т.е. напряжение между началом и концом одной обмотки (или между фазным и нулевым проводом), В.


Как видно из рис. 8.1, опасность двухфазного включения не зависит от режима нейтрали. Нейтралью называется точка соединения обмоток трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через аппараты с большим сопротивлением (сеть с изолированной нейтралью), либо непосредственно соединенная с заземляющим устройством - сеть с глухозаземленной нейтралью.


При двухфазном включении ток, проходящий через тело человека, не уменьшится при изолировании человека от земли с использованием диэлектрических галош, бот, ковриков, полов.


При однофазном же включении человека в сеть сила тока во многом определяется режимом нейтрали. Для рассматриваемого случая сила тока, проходящего через человека, составит (в А)



, (8.3)

где w - частота; С - емкость фаз относительно земли


Рис. 8.1. Включение человека в трехфазную сеть с изолированной нейтралью:
а - двухфазное включение; б - однофазное включение; Ra, Rt, Rc - электросопротивление изоляции фаз относительно земли. Ом; Са, Сb, Сс - емкость проводов относительно земли, Ф, Ia, Ib, IС токи, стекающие на землю через сопротивление изоляции фаз (токи утечки)


Для упрощения формулы принято, что Ra = Rb = Rc = Rиз, а Са = Cb = Cc = С.


В производственных условиях изоляция фаз, изготовленная из диэлектрических материалов и имеющая конечную величину, в процессе старения, увлажнения, покрытия пылью изменяется у каждой фазы неодинаково. Поэтому расчет безопасных условий, который в значительной степени осложняется, необходимо вести с учетом реальных значений сопротивления R и емкостей С для каждой фазы. Если емкость фаз относительно земли мала, т. е. Са = Cb = Сс = 0 (например, в воздушных сетях небольшой протяженности), то


Iч = Uф/(Rч+Rиз/3), (8.4)


Если же емкость велика (Са = Сь = Сс не равно 0) и Rиз велико (например, в кабельных линиях), то сила тока, протекающего через тело человека, будет определяться только емкостной составляющей:


, (8.5)

где Хс = 1/wС- емкостное сопротивление, Ом.


Из приведенных выражений видно, что в сетях с изолированной нейтралью опасность поражения человека током тем меньше, чем меньше емкостная и выше активная составляющая фазных проводов относительно земли. Поэтому в таких сетях весьма важно постоянно контролировать Rиз для выявления и устранения повреждений.


Рис. 8.2. Включение человека в трехфазную сеть с изолированной нейтралью при аварийном режиме. Пояснения в тексте


Если емкостная составляющая велика, то высокое сопротивление изоляции фаз не обеспечивает необходимой защиты.


В случае аварийной ситуации (рис. 8.2), при замыкании одной из фаз на землю, сила тока, проходящего через человека, будет равна (в А)


Если принять, что Rзм = 0 или Rзм << Rч (что бывает в реальных аварийных условиях), то, исходя из приведенного выражения, человек окажется под линейным напряжением, т. е. попадет под двухфазное включение. Однако чаще всего R3M не равно 0, поэтому человек будет находиться под напряжением, меньшим Uл, но большим Uф, при условии, что Rиз/3 >> Rзм.


Замыкание на землю существенным образом изменяет и напряжение токоведущих частей электроустановки относительно земли и заземленных конструкций здания. Замыкание на землю всегда сопровождается растеканием тока в грунте, что, в свою очередь, приводит к возникновению нового вида поражения человека, а именно попадание под напряжение прикосновения и напряжение шага. Такое замыкание может быть случайным или преднамеренным. В последнем случае проводник, находящийся в контакте с землей, называется заземлителем или электродом.


В объеме земли, где проходит ток, возникает так называемое """поле (зона) растекания тока". Теоретически оно простирается до бесконечности, однако в реальных условиях уже на расстоянии 20 м от заземлителя плотность тока растекания и потенциал практически равны нулю.


Характер потенциальной кривой растекания существенным образом зависит от формы заземлителя. Так, для одиночного полусферического заземлителя потенциал на поверхности земли будет изменяться по гиперболическому закону (рис. 8.3).


Рис. 8.3. Распределение потенциала на поверхности земли вокруг полушарового заземлителя (ф - изменение потенциала заземлителя на поверхности земли; фз -максимальный потенциал заземлителя при силе тока замыкания на землю I3; r - радиус заземлителя)


Рис. 8.4. Напряжение прикосновения при одиночном заземлителе (ф3 - суммарное сопротивление грунта растеканию тока от заземлителя):
1 - потенциальная кривая; 2 - кривая, характеризующая изменение Uпр по мере удаления от заземлителя; 3 - пробой фазы на корпус


В зависимости от места нахождения человека в зоне растекания и его контакта с электроустановкой б, корпус которой заземлен и находится под напряжением, человек может попасть под напряжение прикосновения Uпр (рис. 8.4), определяемое как разность потенциалов между точкой электроустановки, которой касается человек ф3, и точкой грунта, на которой он стоит - фосн (в В)


Uпр = ф3 - фосн = ф3 (1 - фосн/ф3), (8.7)


где выражение (1 - фосн/ф3) = а1 представляет собой коэффициент напряжения прикосновения, характеризующий форму потенциальной кривой.


Из рис. 8.4 видно, что напряжение прикосновения будет максимальным при удалении человека от заземлителя на 20 м и более (электроустановка в) и численно равно потенциалу заземлителя Uпр = ф3, при этом а1 = I. Если же человек стоит непосредственно над заземлителем (электроустановка а), то Unp = 0 и а1 =0. Это самый безопасный случай.


Выражение (8.7) позволяет вычислить Unp без учета дополнительных сопротивлений в цепи человек - земля, т. е. без учета сопротивления обуви, сопротивления опорной поверхности ног и сопротивления пола. Все это учитывается коэффициентом а2, поэтому в реальных условиях величина напряжения прикосновения будет еще меньше.

Похожие публикации