Строительный портал - Дом. Водонагреватели. Дымоходы. Монтаж отопления. Обогреватели. Оборудование

Российские космические костюмы. Одежда для вакуума: Как устроены космические скафандры

Скафандр - это не просто костюм. Это космический корабль, повторяющий форму тела. И появился он задолго до первых полётов в космос. В начале ХХ века учёные уже знали, что условия в космосе и на других планетах сильно отличаются от земных. Для будущих космических полётов нужно было придумать костюм, который защищал бы человека от воздействия убийственной внешней среды.

Скафандр - это чудо техники, космическая станция в миниатюре… Вам-то кажется, что скафандр переполнен, как дамская сумочка, но на самом деле всё сделано так компактно, что просто красота… В общем, скафандр мой был похож на первоклассный автомобиль, а шлем - на швейцарские часы.
Роберт Хайнлайн «Имею скафандр - готов путешествовать»

Предтечи скафандра

Название «скафандр» происходит от французского слова, предложенного в 1775 году аббатом-математиком Жаном-Батистом де Ла Шапелем. Естественно, о полётах в космос в конце XVIII века речи не шло - учёный предложил называть так водолазное снаряжение. Само слово, которое можно перевести с греческого примерно как «лодко-человек», неожиданно вошло в русский язык с приходом космической эры. В английском же языке скафандр так и остался «космическим костюмом» (space suit).

Водолазные скафандры Жана-Батиста де Ла Шапеля.

Чем выше человек взбирался, тем сильнее назревала необходимость в костюме, который поможет ему сделать ещё один шаг в сторону неба. Если на высоте шести-семи километров достаточно кислородной маски и тёплой одежды, то после десятикилометровой отметки давление падает настолько, что лёгкие перестают усваивать кислород. Чтобы выжить в таких условиях, нужны герметичная кабина и компенсирующий костюм, который при разгерметизации сжимает человеческое тело, на какое-то время заменяя ему внешнее давление.

Однако если подняться ещё выше, то не поможет и эта болезненная процедура: пилот погибнет от кислородного голодания и декомпрессионных расстройств. Единственное решение - сделать полностью герметичный скафандр, в котором внутреннее давление поддерживается на достаточном уровне (обычно не менее 40% от атмосферного, что соответствует высоте семи километров). Но и тут хватает проблем: надутый скафандр затрудняет движения, в нём почти невозможно совершать точные манипуляции.

Английский физиолог Джон Холден опубликовал в 1920-е годы серию статей, в которых предложил использовать водолазные костюмы для защиты воздухоплавателей. Он даже построил прототип такого скафандра для американского воздухоплавателя Марка Риджа. Последний испытал костюм в барокамере при давлении, соответствующем высоте 25,6 километра. Однако аэростаты для полётов в стратосфере всегда стоили дорого, и Риджу не удалось собрать средства для установления мирового рекорда с помощью костюма Холдена.

В Советском Союзе скафандрами для высотных полётов занимался инженер Института авиационной медицины Евгений Чертовский. В период с 1931 по 1940 год он разработал семь моделей герметичных костюмов. Все они были далеки от совершенства, но зато Чертовский первым в мире решил проблему, связанную с подвижностью. После наддува скафандра пилоту требовалось большое усилие, чтобы просто согнуть конечность, поэтому в модели Ч-2 инженер применил шарниры. Модель Ч-3, созданная в 1936 году, содержала в себе практически все элементы, которые есть в современном космическом скафандре, включая впитывающее бельё. Ч-3 была испытана на тяжёлом бомбардировщике ТБ-3 19 мая 1937 года.


Первые высотные скафандры СССР: Ч-3 (1936) и СК-ЦАГИ-5 (1940)

В 1936 году на экраны вышел фантастический фильм «Космический рейс», в создании которого участвовал Константин Циолковский. Кино о грядущем покорении Луны так захватило молодых инженеров Центрального аэрогидродинамического института (ЦАГИ), что они принялись активно работать над прототипами космических скафандров. Первый образец под индексом СК-ЦАГИ-1 был сконструирован, изготовлен и испытан на удивление быстро - всего лишь за один 1937 год.

Скафандр и впрямь производил впечатление чего-то внеземного: верхняя и нижняя части соединялись с помощью поясного разъёма; для облегчения подвижности появились плечевые шарниры; оболочка состояла из двух слоёв прорезиненной ткани. На второй модели была установлена автономная регенерационная система, рассчитанная на шесть часов непрерывной работы. В 1940 году на основе полученного опыта инженеры ЦАГИ создали последний довоенный советский скафандр СК-ЦАГИ-8. Его испытали на истребителе И-153 «Чайка».

После войны инициатива перешла к Лётноисследовательскому институту (ЛИИ). Его специалистам было поручено создать костюмы для пилотов авиации, которая быстро покоряла новые высоты и скорости. Серийное производство одному институту было не потянуть, и в октябре 1952 года инженер Александр Бойко создал специальный цех на заводе №918 в подмосковном Томилино. Ныне это предприятие известно как НПП «Звезда». Именно там был создан скафандр для Юрия Гагарина.

Скафандры для собак (на фото - Белка) делались попроще: животным не требовалось выполнять сложную работу.

Первые полёты

Когда в конце 1950-х годов советские инженеры-конструкторы приступили к проектированию первого космического корабля «Восток», они изначально планировали, что человек полетит в космос без скафандра. Пилота должны были поместить в герметичный контейнер, который выстреливался бы из спускаемого аппарата перед приземлением. Однако такая схема оказалась громоздкой и требовала длительных испытаний, поэтому в августе 1960 года бюро Сергея Королёва переработало внутреннюю компоновку «Востока», заменив контейнер катапультируемым креслом. Соответственно, для защиты будущего космонавта в случае разгерметизации требовалось быстро создать подходящий костюм. Времени на стыковку скафандра с бортовыми системами не оставалось, поэтому решили сделать систему жизнеобеспечения, размещаемую непосредственно в кресле.

Скафандр, получивший обозначение СК-1, был основан на высотном костюме «Воркута», который предназначался для пилотов истребителя-перехватчика Су-9. Только шлем пришлось полностью переделать. Например, в нём был установлен специальный механизм, управляемый датчиком давления: если оно резко падало, механизм мгновенно захлопывал прозрачное забрало.

Первый космонавт в не первом скафандре: Юрий Гагарин в СК-1.

Каждый скафандр изготавливался по индивидуальной мерке. К первому космическому полёту «обшить» весь отряд космонавтов, в то время состоявший из двадцати человек, не получалось. Поэтому сначала выделили шестерых, которые показали наилучший уровень подготовки, а затем - тройку «лидеров»: Юрия Гагарина, Германа Титова и Григория Нелюбова. Для них скафандры изготовили в первую очередь.

Один из скафандров СК-1 побывал на орбите раньше космонавтов. Во время беспилотных испытательных запусков корабля «Восток», проведённых 9 и 25 марта 1961 года, на борту вместе с подопытными дворнягами находился человекоподобный манекен в скафандре, прозванный «Иваном Ивановичем». В его груди была установлена клетка с мышами и морскими свинками. Под прозрачное забрало шлема положили табличку с надписью «Макет», чтобы случайные свидетели приземления не приняли его за инопланетное вторжение.

Скафандр СК-1 использовался в пяти пилотируемых полётах кораблей «Восток». Только для полёта «Востока-6», в кабине которого находилась Валентина Терешкова, был создан скафандр СК-2, учитывающий особенности женской анатомии.

Валентина Терешкова в «дамском» скафандре СК-2 . Первые советские скафандры были ярко-оранжевыми, чтобы приземлившегося лётчика было легче найти. Но скафандрам для открытого космоса лучше подходит отражающий все лучи белый.

Американские конструкторы программы «Меркурий» пошли по пути конкурентов. Однако были и отличия, которые следовало учесть: маленькая капсула их корабля не позволяла долго оставаться на орбите, а в первые запуски должна была всего лишь достичь границы космического пространства. Скафандр Navy Mark IV был создан Расселом Колли для пилотов военно-морской авиации, причём он выгодно отличался от других моделей гибкостью и сравнительно небольшим весом. Чтобы адаптировать скафандр к космическому кораблю, пришлось внести несколько изменений - прежде всего в устройство шлема. У каждого астронавта было три индивидуальных скафандра: для обучения, для полёта и резервный.

Скафандр программы «Меркурий» продемонстрировал свою надёжность. Только однажды, когда капсула «Меркурия-4» начала тонуть после приводнения, скафандр едва не погубил Вирджила Гриссома - астронавт едва успел отсоединиться от системы жизнеобеспечения корабля и выбраться наружу.

Выход в открытый космос

Первые скафандры были аварийно-спасательными, присоединялись к системе жизнеобеспечения корабля и не позволяли выйти в открытый космос. Специалисты понимали, что если космическая экспансия продолжится, то одним из обязательных этапов станет создание автономного скафандра, в котором можно будет работать в открытом космосе.

Сначала под свою новую пилотируемую программу «Джемини» американцы хотели доработать «меркурианский» скафандр Mark IV, но к тому моменту был полностью готов высотный герметичный костюм G3C, созданный под проект ракетоплана Х-15, - его и взяли за основу. Всего в ходе полётов «Джемини» использовались три модификации - G3C, G4C и G5C, причём для выхода в открытый космос были пригодны только скафандры G4C. Все скафандры были подключены к системе жизнеобеспечения корабля, однако на случай проблем было предусмотрено автономное устройство ELSS, ресурсов которого хватало на поддержку астронавта в течение получаса. Впрочем, астронавтам не пришлось им воспользоваться.

Именно в скафандре G4C совершил выход в открытый космос Эдвард Уайт, пилот корабля «Джемини-4». Произошло это 3 июня 1965 года. Но к тому времени он не был первым - за два с половиной месяца до Уайта в свободный полёт рядом с кораблём «Восход-2» отправился Алексей Леонов.

Экипаж «Восхода-2» , Павел Беляев и Алексей Леонов, в скафандрах «Беркут».

Корабли «Восход» создавались для достижения космических рекордов. В частности, на «Восходе-1» в космос впервые полетел экипаж из трёх космонавтов - для этого из шарообразного спускаемого аппарата удалили катапультируемое кресло, а сами космонавты отправились в полёт без скафандров. Корабль «Восход-2» готовили для выхода одного из членов экипажа в открытый космос, и тут без герметичного костюма было не обойтись.

Специально для исторического полёта был разработан скафандр «Беркут». В отличие от СК-1, новый костюм имел вторую герметичную оболочку, шлем со светофильтром и заплечный ранец с кислородными баллонами, запаса которых хватало на 45 минут. Кроме того, космонавт был соединён с кораблём семиметровым фалом, в состав которого входили амортизирующее устройство, стальной трос, шланг аварийной подачи кислорода и электрические провода.

Космический корабль «Восход-2» стартовал 18 марта 1965 года, и в начале второго витка Алексей Леонов покинул борт. Тут же командир экипажа Павел Беляев торжественно объявил на весь мир: «Внимание! Человек вышел в космическое пространство!» Изображение парящего на фоне Земли космонавта транслировалось по всем телеканалам. Леонов находился в пустоте 23 минуты 41 секунду.

Хотя американцы уступили первенство, они быстро и заметно обогнали советских конкурентов по количеству выходов в открытый космос. Операции вне корабля осуществлялись во время полётов «Джемини-4, -9, -10, -11, 12». Следующий советский выход состоялся только в январе 1969 года. В том же году американцы высадились на Луну.

Рекорды в вакууме

Сегодня выходами в космос никого не удивишь: на конец августа 2013 года зафиксировано 362 выхода общей продолжительностью 1981 час 51 минута (82,5 суток, почти три месяца). И всё же здесь есть свои рекорды.

Абсолютным рекордсменом по количеству часов, проведённых в открытом космосе , вот уже много лет остаётся российский космонавт Анатолий Соловьёв - он совершил 16 выходов общей продолжительностью 78 часов 46 минут. На втором месте - американец Майкл Лопес-Алегриа; он совершил 10 выходов общей продолжительностью 67 часов 40 минут.

Самым длительным стал выход американцев Джеймса Восса и Сьюзан Хелмс 11 марта 2001 года, продолжавшийся 8 часов 56 минут.

Максимальное количество выходов за один полёт - семь; этот рекорд принадлежит россиянину Сергею Крикалёву.

Дольше всех на поверхности Луны находились астронавты «Аполлона-17» Юджин Сернан и Харрисон Шмитт: за три выхода в декабре 1972 года они провели там 22 часа 4 минуты.

Если сравнивать не космонавтов, а страны, то здесь безусловно лидируют США: 224 выхода, 1365 часов 53 минуты вне корабля.


Скафандры для Луны

На Луне требовались совсем другие скафандры, нежели на земной орбите. Скафандр должен был стать полностью автономным и позволять человеку работать вне корабля несколько часов. Он должен был обеспечить защиту от микрометеоритов и, главное, от перегрева под прямыми солнечными лучами, ведь высадки планировались в лунные дни. Кроме того, в NASA построили специальный наклонный стенд, чтобы выяснить, как пониженная гравитация влияет на движение астронавтов. Оказалось, что характер ходьбы резко меняется.

Скафандр для полёта на Луну совершенствовался в ходе всей программы «Аполлон». Первый вариант A5L не удовлетворил заказчика, и вскоре появился скафандр A6L, куда была добавлена теплоизоляционная оболочка. После пожара 27 января 1967 года на корабле «Аполлон-1», приведшего к гибели трёх астронавтов (в том числе упомянутых выше Эдварда Уайта и Вирджила Гриссома), скафандр доработали до огнестойкой версии A7L.

По своей конструкции A7L был цельным, многослойным костюмом, закрывавшим туловище и конечности, с гибкими сочленениями, сделанными из резины. Металлические кольца на вороте и манжетах рукавов предназначались для установки герметичных перчаток и «шлема-аквариума». Все скафандры имели вертикальную «молнию», которая шла от шеи до паха. A7L обеспечивал четырёхчасовую работу астронавтов на Луне. На всякий случай в ранце находился ещё и резервный блок жизнеобеспечения, рассчитанный на полчаса. Именно в скафандрах A7L астронавты Нил Армстронг и Эдвин Олдрин ступили на Луну 21 июля 1969 года.

В трёх последних полётах лунной программы использовались скафандры A7LB. Они отличались двумя новыми сочленениями на шее и поясе - такая доработка понадобилась для того, чтобы облегчить вождение лунного автомобиля. Позднее этот вариант скафандров использовался на американской орбитальной станции «Скайлэб» и при международном полёте «Союз-Аполлон».

Советские космонавты тоже собирались на Луну. И для них приготовили скафандр «Кречет». Поскольку по задумке высаживаться на поверхность должен был только один член экипажа, для скафандра выбрали полужёсткий вариант - с дверцей на спине. Космонавт должен был не надевать костюм, как в американском варианте, а буквально влезать в него. Специальная система тросиков и боковой рычаг позволяли закрыть за собой крышку. Вся система жизнеобеспечения располагалась в откидной дверце и работала не снаружи, как у американцев, а в нормальной внутренней атмосфере, что упрощало конструкцию. Хотя «Кречет» так и не побывал на Луне, наработки по нему использовались при создании других моделей.

Хищные птицы космоса

В 1967 году начались полёты новых советских кораблей «Союз». Они должны были стать основным транспортным средством при создании долговременных орбитальных станций, поэтому потенциальное время, которое человек должен был провести вне корабля, неизбежно увеличивалось.

Скафандр «Ястреб» был в основном похож на «Беркут», который использовался на корабле «Восход-2». Различия были в системе жизнеобеспечения: теперь дыхательная смесь циркулировала внутри скафандра по замкнутому контуру, где очищалась от углекислоты и вредных примесей, подпитывалась кислородом и охлаждалась. В «Ястребах» космонавты Алексей Елисеев и Евгений Хрунов переходили из корабля в корабль во время полётов «Союза-4» и «Союза-5» в январе 1969 года.

На орбитальные станции космонавты летали без спасательных скафандров - за счёт этого удавалось увеличить запасы на борту корабля. Но однажды космос не простил такой вольности: в июне 1971 года из-за разгерметизации погибли Георгий Добровольский, Владислав Волков и Виктор Пацаев. Конструкторам пришлось срочно создавать новый спасательный скафандр «Сокол-К». Первый полёт в этих скафандрах был проведён в сентябре 1973 года на «Союзе-12». С тех пор космонавты, отправляясь в полёт на отечественных кораблях «Союз», всегда используют варианты «Сокола».

Примечательно, что скафандры «Сокол-КВ2» были приобретены китайскими торговыми представителями, после чего в Китае появился собственный космический костюм, именуемый, как и пилотируемый корабль, «Шэньчжоу» и очень похожий на российский образец. В таком скафандре отправился на орбиту первый тайконавт Ян Ливэй.

Для выхода в открытый космос скафандры из серии «Сокол» не годились, поэтому, когда Советский Союз начал запускать орбитальные станции, позволяющие сооружать различные модули, понадобился и соответствующий защитный костюм. Им стал «Орлан» - автономный полужёсткий скафандр, созданный на основе лунного «Кречета». В «Орлан» тоже надо было залезать через дверцу в спине. Кроме того, создатели этих скафандров сумели сделать их универсальными: теперь штанины и рукава подгонялись под рост космонавта.

«Орлан-Д» впервые был опробован в открытом космосе в декабре 1977 года на орбитальной станции «Салют-6». С тех пор эти скафандры в разных модификациях использовались на «Салютах», комплексе «Мир» и Международной космической станции (МКС). Космонавты благодаря скафандру могут поддерживать связь друг с другом, с самой станцией и с Землёй.

Скафандры серии «Орлан» оказались настолько хороши, что китайцы сделали по их образцу свой «Фэйтянь» для выхода в открытый космос. 27 сентября 2008 года эту операцию в ходе полёта корабля «Шэньчжоу-7» проделал тайконавт Чжай Чжиган. Характерно, что при выходе его страховал напарник Лю Бомин в купленном у России «Орлане-М».

Опасный космос

Выход в открытый космос опасен по множеству причин: глубокий вакуум, экстремальные температуры, солнечная радиация, космический мусор и микрометеориты. Серьёзную опасность представляет и удаление от космического корабля.

Первый опасный инцидент произошёл ещё с Алексеем Леоновым в марте 1965 года. Выполнив программу, космонавт не смог вернуться на корабль из-за того, что его скафандр раздулся. Совершив несколько попыток войти в шлюз ногами вперёд, Леонов решил развернуться. При этом он снизил уровень избыточного давления в скафандре до критического, что позволило ему втиснуться в шлюзовую камеру.

Инцидент с повреждением скафандра произошёл при полёте шаттла «Атлантис» в апреле 1991 года (миссия STS-37). Маленький прут проколол перчатку астронавта Джерри Росса. По счастливой случайности разгерметизации не произошло - прут застрял и «запечатал» образовавшееся отверстие. Прокол даже не заметили до тех пор, пока астронавты не вернулись на корабль и не начали проверку скафандров.

Ещё один потенциально опасный случай произошёл 10 июля 2006 года во время второго выхода в открытый космос астронавтов шаттла «Дискавери» (полёт STS-121). От скафандра Пирса Селлерса отсоединилась специальная лебёдка, которая не давала астронавту улететь в пространство. Вовремя заметив проблему, Селлерс с напарником сумели прикрепить устройство обратно, и работа завершилась благополучно.

Скафандры будущего

Под программу многоразовых космических кораблей «Спейс Шаттл» американцы разработали несколько скафандров. При испытаниях новой ракетно-космической системы астронавты облачались в SEES - спасательный скафандр, позаимствованный у военной авиации. В дальнейших полётах его сменил вариант LES, а затем - более совершенная модификация ACES.

Для выходов в открытый космос был создан скафандр EMU. Он состоит из верхней жёсткой части и мягких штанов. Как и «Орлан», EMU могут многократно использовать разные космонавты. В нём можно спокойно работать в космосе семь часов, ещё полчаса даёт резервная система жизнеобеспечения. За состоянием скафандра следит специальная микропроцессорная система, которая предупреждает астронавта, если что-то идёт не так. Первый EMU побывал на орбите в апреле 1983 года на корабле «Челленджер». Сегодня скафандры этого типа активно используются на МКС наряду с российскими «Орланами».

Скафандры открытого космоса NASA: лунный скафандр A7LB, скафандр для «шаттлов» EMU и экспериментальный скафандр I-Suit.

Американцы считают, что EMU морально устарел. Перспективная космическая программа NASA включает полёты на астероиды, возвращение на Луну и экспедицию на Марс. Поэтому необходим скафандр, который объединял бы в себе положительные качества спасательных и рабочих костюмов. Скорее всего, он будет с люком за спиной, позволяющим пристыковывать скафандр к станции или жилому модулю на поверхности планеты. Чтобы привести такой скафандр в рабочее состояние (включая герметизацию), требуются считаные минуты.

Прототип скафандра Z-1 уже проходит испытания. За определённое внешнее сходство с костюмом известного мультипликационного персонажа его прозвали «скафандром Базза Лайтера».

Специалисты пока не определились, в каком костюме человек впервые ступит на поверхность Красной планеты. Хотя Марс обладает атмосферой, она настолько разрежена, что легко пропускает солнечную радиацию, поэтому человек внутри скафандра должен быть хорошо защищён. Специалисты NASA рассматривают широкую палитру возможных вариантов: от тяжёлого жёсткого скафандра Mark III до лёгкого обтягивающего костюма Bio-Suit.

Перспективный скафандр Bio-Suit (прототип). Покоряйте Марс, оставаясь стильным!

∗∗∗

Технологии изготовления скафандров будут развиваться. Костюмы для космоса станут умнее, элегантнее, изощрённее. Возможно, когда-нибудь появится универсальная оболочка, способная защитить человека в любой среде. Но и сегодня скафандры - уникальный продукт технологий, которые без преувеличения можно назвать фантастическими.

Впервые идеи создания костюмов, которые смогут защитить человека от неблагоприятной и агрессивной для него среды, появилась в 1775 году, когда французский аббат-математик Жан-Батист де ла Шапель предложил создать костюм для погружения в воду. О космических кораблях и полетах на Луну в те времена никто и не думал, но название изобретению дали «скафандр», что означало «лодка-человек». Несмотря на то что изначально скафандром назвали современные водолазные костюмы, наименование снаряжения прочно вошло в обиход.

В 1920-е годы в Англии стали применять водолазные костюмы для воздухоплавателей, так как чем выше поднимались летательные аппараты, тем более сложными становились условия для пилотов: это и низкие температуры, и резкое изменение давления, и кислородное голодание. Герметичный костюм помогал решать эти проблемы, но лишь до определенных высот.

В Советском Союзе разработкой снаряжения для экстремальных высот занимался инженер Института авиационной медицины Евгений Чертовский. Он разработал порядка семи модификаций скафандров и первым решил проблему подвижности. Так как первые модели скафандров при поднятии на высоту раздувались, находящемуся внутри человеку было крайне сложно даже согнуть руку. Чертовский внедрил систему шарниров, что значительно повысило мобильность костюма. Уже в 1936 году Чертовский разработал модель скафандра Ч-3, которая содержала в себе практически все элементы современных космических костюмов, включая термобелье.

Толчком к работе над скафандром, который позволит совершать полеты в космос, стала индустрия кинематографии. В 1936 году в СССР сняли фантастический фильм «Космический рейс». В работе над фильмом принимал участие Константин Циолковский. После выхода фильма молодые инженеры Центрального аэрогидродинамического института стали вплотную заниматься созданием космического скафандра.

В послевоенные годы инициатива по конструированию скафандров для космонавтов перешла к инженерам Летно-исследовательского института. Конструкторы получили задание на создание костюмов для пилотов авиации, поднимающихся на новые высоты и развивающих новые скорости.

Вскоре стало ясно, что для серийного производства скафандров мощностей одного института явно недостаточно. Так в октябре 1952 года на заводе №918 в подмосковном Томилине был создан специальный цех, который в дальнейшем получил название НПП «Звезда». Именно там был изготовлен скафандр Юрия Гагарина.

Первоначальные планы полета в космос не включали необходимость скафандра, так как космонавт должен был находиться в герметичной капсуле. Позднее капсулу заменили на кресло, и необходимость скафандра, который спасет жизнь космонавту при любом ЧП, стала очевидной.

Прототипом первого космического скафандра СК-1 был высотный костюм «Воркута», разработанный для летчиков истребителя-перехватчика Су-9.

Важнейшей отличительной чертой стал шлем, который при падении давления автоматически захлопывал забрало. Для этого в шлем был встроен специальный датчик.

Скафандры изготавливались по индивидуальным меркам. К первому полету было создано три костюма для лучших кандидатов в космические первопроходцы. Это были Юрий Гагарин, Герман Титов и Григорий Нелюбов.

Темпы освоения космоса показали, что необходимо создать скафандр нового уровня, который сможет обеспечить выход космонавта в открытый космос. Первые модели были лишь аварийно-спасательными и не позволяли находиться космонавту на орбите вне космического корабля, так как системы жизнеобеспечения находились в самом корабле, а костюм только присоединялся к ним.

Для выхода в открытый космос необходимо было создать автономный скафандр. Этими разработками активно занялись конструкторы СССР и США.

Две сверхдержавы начали гонку в космической отрасли за первенство в открытом космосе. Американского коллегу на 1,5 месяца опередил советский космонавт Алексей Леонов. Для него был изготовлен скафандр «Беркут» – модернизированная модификация СК-1. В его конструкции были герметичная оболочка, заплечный ранец, оснащенный кислородом, а в шлеме встроенный светофильтр.

Модернизация скафандров была обусловлена стремлением покорять новые скорости, высоты и расстояния. После высадки на Луну стали проектироваться костюмы, которые позволят космонавтам десантироваться на Марс и совершать полеты в много миллионов световых лет.

Как это устроено

В настоящее время на борту МКС используются скафандры «Орлан» и его модификации. С 1977 года в этих костюмах совершено боле 130 парных выходов в открытый космос.



Важнейшие характеристики, которыми обладают скафандры «Орлан»:

    защита от перегрева, если космонавт находится на солнечной стороне;

    защита от переохлаждения, если космонавт находится в тени;

    защита от солнечной радиации;

    защита от метеорного вещества;

    максимальная надежность;

    минимальные габариты;

    минимальная масса;

    возможность выполнять работу около корабля;

    самостоятельное надевание-снятие;

    использование единого размера для любого космонавта;

    возможность обслуживания скафандра на орбите без участия Земли;простота замены отдельных элементов.

Учитывая все указанные характеристики, скафандр спроектирован так, что рост космонавта может варьироваться от 165 до 190 см. Вес костюма 110 кг.

В таком костюме космонавт может находиться в автономном режиме до 7 часов.

Находясь в космосе, человек испытывает физические и психологические нагрузки. С физиологической точки зрения основной проблемой становится микрогравитация. Также космонавты сталкиваются с головными болями, проблемами со сном, вялостью и заторможенностью движений. На космических станциях предусмотрены различные тренажеры и разработаны специальные препараты для того, чтобы сократить период адаптации космонавта, а также снизить все негативные факторы влияния невесомости на организм.

Кроме того, космонавту необходимо адаптироваться эмоционально. Ученые выявили, что, находясь в космосе, человек проходит несколько стадий, среди которых скука, апатия, раздражительность, после чего наступает эйфория. По словам космонавтов, находясь на орбите, они чувствуют боль не так остро, как на Земле, и микротравмы не причиняют никаких болевых ощущений. Несколько лет назад ученые начали заниматься этим вопросом и продолжают это исследование.

Взгляд в будущее

Самая современная модификация скафандра «Орлан» представляет собой миниатюрный космический корабль, так как оснащена максимальным количеством новейших технологических достижений.

Разработчики НПП «Звезда» дали скафандру имя «Орлан-МКС»: модернизированный, компьютеризированный, синтетический.

В настоящее время «Орлан-МКС» проходит финальные тесты, и до конца 2018 года планируется отправить его на орбиту.

В новой модификации скафандра космонавт сможет находиться в автономном режиме до 10 часов.

Новый костюм имеет свою систему теплозащиты, систему теплообеспечения, систему связи, передачи телеметрической информации.

«Орлан-МКС» оснащен запасом питьевой воды и оборудован даже таким элементом удобства, как «чесалка» для носа.

Отличительной особенностью модифицированного костюма стала система терморегуляции, то есть космическая версия климат-контроля. Во время работы в открытом космосе космонавты испытывают серьезные нагрузки, а также выделяют большое количество тепла. Перегрев и повышенное потоотделение являются не только отвлекающими факторами, но и могут быть опасны для космонавта.

Система поддержания микроклимата создает оптимально комфортную температуру и позволяет не отвлекаться от работы. В любой момент настройки системы терморегуляции можно изменить и подстроить температуру для наиболее комфортного пребывания в скафандре.

В костюм встроен дисплей высокого разрешения, который отображает состояние всех систем скафандра и позволяет ими управлять. Ранее космонавты жаловались, что, находясь на солнечной стороне станции, изображение на дисплее «расплывается». При разработке нового дисплея были учтены эти замечания. Также на экране отображается местоположение космонавта относительно самой станции, так как МКС представляет собой комплекс из большого количества объектов, и бывали ситуации, когда после нескольких часов работы на орбите космонавты теряли ориентацию в пространстве и с трудом добирались до входного люка.

С особым вниманием разработчики подошли к вопросу термозащиты, так как перепады температуры на орбите составляют 240 градусов между солнечной и теневой стороной.

Для того чтобы максимально обезопасить космонавта, основной - жесткий корпус скафандра состоит из алюминиевого сплава. Жесткий корпус и гермошлем представляют собой единое целое. Рукава и штанины сделаны из мягкого подвижного материала. Весь костюм обезопасен несколькими слоями защиты, в том числе микрометеоритной, то есть несколькими слоями экранно-вакуумной теплоизоляции. Под жестким корпусом расположен мягкий терморегулирующий костюм, состоящий из трубок с циркулирующей по ним водой.

Скафандр разработан таким образом, что космонавт может надеть его самостоятельно за 5 минут. Американские аналоги «выходных» скафандров невозможно надеть без посторонней помощи, также они тяжелее «Орланов» на 35 кг.

Специалисты НПП «Звезда» видят в скафандре «Орлан-МКС» основу для лунного костюма.

Я думаю, что за достаточно короткий период мы могли бы сделать лунный скафандр
Сергей Поздняков, гендиректор НПП «Звезда»

В современном кинематографе громоздкие космические скафандры давно заменили на обтягивающие костюмы. Однако западные инженеры рассматривают вероятность создания таких костюмов с большой долей реалистичности. Предполагается, что костюм будет состоять из большого количества синтетических катушек, которые будут плотно обтягивать тело космонавта, создавая подобие кокона, сохраняя при этом терморегуляционные и защитные функции и не сковывая движений космонавта.

Выводы

    За сравнительно небольшой промежуток времени российская отрасль скафандростроения шагнула далеко вперед и уверенно лидирует по сравнению с западными и азиатскими аналогами.

    Внедрение научно-технического прогресса в процесс конструирования и создания костюмов позволяет ускорить развитие и делать более совершенные космические скафандры, оперативно реагируя на запросы космической отрасли.

    Регулярная научно-исследовательская и аналитическая работа с учетом опыта и потребностей космонавтов позволяет удерживать лидирующие позиции.

    Создавать благоприятный климат для частных инвестиций для ускорения темпов развития отрасли и внедрения высоких технологий.

    Поддерживать научные разработки, направленные на повышение качественных характеристик космических скафандров, обеспечивать необходимый уровень интеграции с различными отраслями науки для ускорения темпа технологического прогресса.

    Развивать научно-аналитическую базу для полноценного изучения потребностей и опыта космонавтов на станции и в открытом космосе для модернизации функциональных систем и материалов.



Образцы первых высотных скафандров (слева направо): скафандр Ч-З (СССР, середина 30-х годов); скафандр Вилли Поста (США, середина 30-х годов); скафандр СК-ЦАГИ-8 (СССР, 1940 г.); скафандр ВСС-04 (СССР, 1950 г.).


Первые космические скафандры. Какими они были. О, какая романтическая тема, особенно для тех кто был рожден в те времена когда человек серьезно нацелился в космос, покорять дивные дальние планеты… но это было давно, увы, сейчас человечество взяло другой курс, курс в никуда. (Но это другая тема.



Каждый из нас видел по телевидению, в кино или на фотографиях, как на стартовой позиции космонавты идут к ракете в своем космическом одеянии - в скафандрах. Но не каждый, наверное, сможет точно ответить на простой вопрос: зачем космонавту скафандр? Для чего конкретно нужно это снаряжение, стесняющее движение человека? И, в частности, для чего оно в космическом корабле, где созданы все необходимые для жизни и работы условия.



Скафандр для выхода в открытый космос из орбитальной станции «Салют-6».


Человеческий организм приспособлен к жизни в условиях земной атмосферы и не может существовать за ее пределами без специальных средств защиты, без созданной для него искусственной среды обитания. В полете основное средство защиты космонавта от воздействия неблагоприятных факторов космического пространства - это сам космический корабль, его герметическая кабина. Однако по требованиям безопасности полета иногда необходимо еще и индивидуальное защитное снаряжение. Например, в такие периоды полета, когда нужно считаться с возможностью разгерметизации кабины или с отказом бортовой системы жизнеобеспечения. Ну, а при выходе из корабля в открытый космос скафандр становится единственной защитой человека.



Космические скафандры (слева направо): спасательный скафандр, применявшийся во время полета Ю. А. Гагарина на корабле «Восток» (1961 г.); скафандр (показан без теплозащитной оболочки), применявшийся А. А. Леоновым для работы в открытом космосе во время полета на корабле «Восход-2» (1965 г.); скафандр, применявшийся А. С. Елисеевым и Е. В. Хруновым при переходе через открытый космос из корабля «Союз-5» в корабль «Союз-4» (1969 г.); скафандр, применявшийся для выхода на Луну в программе «Аполлон» (1969 г.).


А теперь от этих общих соображений перейдем к конкретным факторам, определяющим необходимость такого защитного снаряжения, как скафандр.



Во время полета на борту орбитальной станции «Салют-6» Ю. В. Романенко готовит свой скафандр к выходу в открытый космос. (Снимок сделан Г. М. Гречко).


Человек в безвоздушном пространстве


Известно, что с удалением от поверхности Земли барометрическое давление снижается. Если нормальное давление на уровне моря равно 760 мм ртутного столба, то уже на высоте 12 км оно снижается в 5 раз, а на высоте 50 км - в 1000 раз. На высоте полета орбитальных космических кораблей давление равно примерно 10-6-10-8 мм рт. ст., то есть оно в миллиарды раз меньше, чем на Земле.



Спасательный скафандр для полетов на космических кораблях «Союз».


Кислород, жизненно необходимый человеку, поглощается им из вдыхаемого воздуха и одновременно в процессе дыхания из организма удаляется углекислота. Для этого даже в состоянии покоя человек прокачивает через свои легкие до 450 литров воздуха в час. Содержание кислорода в атмосфере составляет 21% по объему и остается практически постоянным на разных высотах. Поэтому на долю кислорода всегда приходится примерно пятая часть атмосферного давления, у поверхности Земли это составляет 160 мм рт. ст. И все наши сложные физиологические системы миллионами лет эволюции приспособились к поглощению кислорода именно при таком давлении.


С подъемом на высоту падает общее барометрическое давление, а вместе с ним уменьшается парциальное давление кислорода (часть общего давления смеси газов, обусловленная данным газом или паром). Наступает «кислородное голодание»: чтобы получить необходимое количество кислорода, человек начинает дышать более часто и глубоко, а если и в этом случае кислорода оказывается слишком мало, теряет сознание. В нашем организме практически нет запасов кислорода, поэтому если без пищи человек может прожить месяцы, без воды - до 14 суток, то без кислорода - максимум несколько минут.


Кроме кислородного голодания, есть и другие факторы, затрудняющие или делающие невозможным пребывание человека в условиях пониженного давления. Так, в частности, с понижением атмосферного, то есть внешнего, давления до уровня, соответствующего высоте 7-8 км, растворенный в тканях организма азот переходит в газообразное состояние. Появившиеся пузырьки газа могут нарушить кровоснабжение жизненно важных органов или вызвать боли, оказывая механическое давление на нервные окончания (декомпрессионные расстройства). На еще больших высотах может произойти закипание жидких сред организма. Вода, содержащаяся в тканях, уже при давлении около 47 мм рт. ст. (это соответствует атмосферному давлению на высоте 19,2 км) закипает при 37°С, то есть при нормальной температуре тела.


Чтобы предотвратить кислородное голодание к вдыхаемому воздуху добавляют кислород, увеличивают его процентное содержание с таким расчетом, чтобы парциальное давление кислорода составляло привычную для человека величину - 160мм рт. ст. Для этого, в частности в авиации, используют кислородно-дыхательную аппаратуру в комплекте с маской или гермошлемом. Однако уже на высоте 12 км, где общее давление составляет всего 145 мм рт. ст., даже чистый кислород не может создать необходимого парциального давления. А на высоте 16 км при дыхании чистым кислородом человек теряет сознание уже через 15 секунд.


Из всего оказанного нужно сделать такой вывод: для полетов на больших высотах необходимо увеличить общее давление газа, в котором находится и которым дышит человек, то есть нужно создать вокруг человека среду с избыточным давлением, превышающим атмосферное давление на данной высоте. Это одна из главных задач, которая решается с помощью скафандра. Герметичная оболочка скафандра изолирует человека от внешней среды, а внутри скафандра создается искусственная атмосфера с избыточным давлением и необходимым газовым составом.


Избыточное давление в атмосфере скафандра должно быть достаточным для получения нужного парциального давление кислорода и предотвращения декомпрессионных расстройств. В то же время это давление стремятся сделать минимальным, чтобы улучшить подвижность скафандра. Практически в современных космических скафандрах рабочее давление лежит в пределах от 180 до 300 мм рт. ст. Искусственная среда скафандра не обязательно должна обладать всеми свойствами привычной земной атмосферы: если человек находится в скафандре сравнительно недолго, то можно рассчитывать на известные резервы человеческого организма, позволяющие ему без ущерба переносить условия, несколько отличающиеся от нормы.




Проблемы, проблемы…


Работы по созданию скафандров для высотных полетов начались более 40 лет назад, и наша страна включилась в них одной из первых. С тех пор высотные скафандры прошли большой путь - от малоподвижного армированного надувного комбинезона до сложного технического устройства с совершенными системами жизнеобеспечения. Устройства, в котором используются достижения самой современной технологии, материаловедения, химии, электроники и других областей техники.


Разработка современных космических скафандров, особенно предназначенных для работы в открытом космосе, требует решения ряда сложных научно-технических проблем. Нужно, в частности, создать в скафандре необходимый для человека микроклимат (давление, газовый состав, влажность, температура), причем с учетом возможных аварийных ситуаций. Нужно защитить космонавта и оборудование скафандра от воздействия глубокого вакуума и излучений Солнца. Необходимо обеспечить отвод тепла, выделяемого человеком, а это не так-то просто сделать в условиях космоса. Нужно, наконец, обеспечить подвижность космонавтов, их работоспособность, что, конечно, затруднено из-за избыточного давления в скафандрах. Скафандр должен быть герметичным, прочным, легким, иметь небольшой объем, обеспечивать безопасность работы космонавта. К этому следует добавить еще массу, так сказать, вспомогательных «нужно», таких, например, как разработка методов моделирования внешних воздействий космического пространства и условий выхода из корабля при наземных испытаниях или создание материалов, пригодных для условий открытого космоса.


Важные характеристики скафандра - быстрота его надевания и простота эксплуатации. А при длительных полетах на орбитальных станциях, когда программой могут предусматриваться смены экипажей и несколько выходов для работы в открытый космос, к скафандрам начинают предъявлять дополнительные требования. Хочется, например, чтобы скафандр можно было «отрегулировать» для космонавтов разного роста. Чтобы в случае необходимости скафандр можно было отремонтировать или заменить отдельные его элементы.


Как укрыться от солнца


Работу человека в скафандре вне корабля при расчетах обычно оценивают как работу средней тяжести, на которую человек затрачивает мощность в среднем 300 Вт. Этим энергозатратам соответствуют такие показатели жизнедеятельности организма: потребление кислорода - примерно 60 л/час; выделение углекислоты - 48 л/час; выделение влаги - 50-300 г/час (в зависимости от температуры окружающей среды и способа охлаждения тела).


Необходимые климатические и гигиенические условия в скафандре поддерживает автономная система обеспечения жизнедеятельности - сокращенно АСОЖ, - неотъемлемая часть космического скафандра. Именно АСОЖ должна обеспечить заданное давление в скафандре, газовый состав, удаление продуктов жизнедеятельности, поддержание необходимой влажности и температуры.


Особо сложной оказывается задача сохранения теплового баланса. В связи с малым коэффициентом полезного действия человека - он обычно не превышает 20%-вся развиваемая мощность, все эти средние 300 Вт практически превращаются в тепло. Сколько-нибудь значительного теплового обмена между космонавтом, одетым в скафандр, .и космическим пространством не происходит: в космосе ведь нет воздуха, нет теплопроводной среды, которая в земных условиях отводит тепло от нашего тела. Конвекции внутри скафандра в условиях невесомости также нет. Остается лишь один путь теплопередачи - тепловое излучение. При этом необходимо учитывать, что космонавт вне корабля может работать либо в зоне солнечного освещения (на 1м2 поверхности скафандра в открытом космосе падает до 1200 ккал/час солнечного тепла), либо в тени, в условиях сильнейшего космического холода. Поэтому тепловые потоки к скафандру или от него могут резко колебаться и достигать больших величии.Чтобы защищать человека и оборудование от столь резких изменений тепловых потоков, поверх основной оболочки скафандра надевается одежда с несколькими слоями так называемой экранно-вакуумной теплоизоляции, которая работает как своего рода многослойный термос. Кроме того, определенным образом подбираются оптические характеристики («степень черноты» - коэффициент, характеризующий излучательную способность тела; коэффициент поглощения солнечных лучей) материалов для открытых поверхностей скафандра, а также создаются для них специальные краски. Материалы и покрытия подбираются таким образом, чтобы внешние излучения почти полностью отражались и при этом собственное, внутреннее тепловое излучение задерживалось. Важность этой проблемы связана еще и с тем, что для мягких частей скафандра нужны эластичные материалы, а они не всегда выдерживают большие перепады температуры.


В открытом космосе, за пределами атмосферы, состав солнечного излучения существенно отличается от того, к которому мы привыкли на поверхности Земли. Поэтому особые требования предъявляются к прозрачной части шлема: остекление и светофильтры должны защитить глаза и кожу лица от чрезвычайно активных ультрафиолетовых лучей, от инфракрасных (тепловых) лучей, должны ослабить солнечное излучение в видимой части спектра, обеспечив при этом хорошую видимость при различной освещенности.


Микроклимат в скафандре


Наиболее простой способ поддерживать в скафандрах необходимые параметры газовой среды - это непрерывная вентиляция, непрерывная подача в него газовой смеси заданного состава с последующим выбрасыванием ее в окружающую среду. В этой системе сама газовая смесь будет уносить выделенные космонавтом тепло, влагу, углекислоту, вредные примеси. Такая система, как ее называют «открытого типа» обычно применяется на высотных самолетах: здесь можно для вентиляции использовать воздух, взятый из окружающей атмосферы, и только добавлять в него кислород, необходимый для дыхания. Сама система при этом получается очень простой и надежной. Однако для космического скафандра открытые системы слишком расточительны. В космосе, конечно, никакого воздуха нет, и поэтому запасы газов для вентиляции нужно брать с собой в баллонах. А это дополнительные объемы и вес, причем, мягко говоря, немалые.


Тем не менее открытые системы обеспечения жизнедеятельности применялись при первом выходе в космос А. Леонова и при работах вне корабля по программе «Джемини» в США - в этих случаях время работы в скафандре за бортом корабля было невелико и суммарный расход газов получался вполне приемлемым.


В современных космических скафандрах главным образом используют системы регенерационного типа, где циркуляция газа происходит по замкнутому контуру и обновляется не вся газовая среда внутри скафандра, а только те ее компоненты, которые изменяются или расходуются в процессе жизнедеятельности человека. После восстановления в АСОЖ газовая смесь пополняется кислородом и снова используется для дыхания и вентиляции.


Как уже говорилось, при создании микроклимата в скафандре особые заботы разработчикам доставляет тепловой режим. Достаточно сказать, что даже при сравнительно небольшой «теплообменной недостаточности», всего на каких-то 150 ккал/час, у человека с массой 70 кг, находящегося в скафандре, температура тела за 1 час повысится более чем на 2°С. А это сопряжено с потерей работоспособности.


Перенос тепла от тела человека к охлаждающему агрегату АСОЖ может осуществляться с использованием как газа (воздуха), так и жидкости. При воздушном охлаждении тепло отбирается у тела главным образом за счет интенсивного потоотделения, а это, конечно, серьезный недостаток. Кроме того, для отвода тепла при интенсивной работе космонавта необходимо прогонять через скафандр весьма большой объем газа, примерно 700-1000 л/мин. Это, в свою очередь, требует вентилятора мощностью в несколько сот ватт, требует больших затрат электроэнергии, а сильный обдув не очень-то приятен для космонавта.


Водяное охлаждение, пожалуй, является единственно возможным методом поддержания приемлемых тепловых условий в скафандре при интенсивной работе космонавта. Чтобы отвести 300-500 ккал/ч тепла, расход воды через костюм водяного охлаждения обычно составляет 1,5-2 л/мин, потребная длина охлаждающих трубок- до 100 метров. Для прокачки воды вполне хватает насоса с мощностью двигателя в несколько ватт. Одновременно с водяным охлаждением нужна и вентиляция - она уносит выделяемую влагу и углекислоту, но, конечно, мощность вентилятора уже во много раз меньше, чем при чисто воздушном охлаждении.


Легко ли двигаться в скафандре


Разная одежда по-разному сковывает движения человека. Сравните, как легко поднимается рука, если вы в одной легкой рубашке, и насколько трудно поднять ее в зимнем пальто. По-особому сопротивляется движению тела скафандр. Его мягкая оболочка под действием внутреннего избыточного давления всегда стремится, принять форму тела вращения и распрямиться. Согнуть какую-либо ее часть, скажем, рукав или штанину, не так-то просто, и чем больше внутреннее давление, тем труднее это сделать. Чтобы обеспечить подвижность тела, в скафандре применяют шарниры, их размещают в области основных суставов - плечевых, локтевых, коленных, в области лодыжек, пальцев рук и т. д. Конструкция шарниров может быть различной: она зависит от характера движений, в которых участвует шарнир. Кроме того, для повышения подвижности в ряде сочленений используются герметические подшипники (например, в плечевом или кистевом сочленениях), совершенствуется раскрой оболочки скафандра, разрабатываются более легкие и гибкие материалы.


При работе в первых космических скафандрах из-за их относительно низкой подвижности космонавтам приходилось затрачивать немалые дополнительные усилия, что в итоге вело к интенсификации обменных процессов в организме. Из-за этого, в свою очередь, приходилось увеличивать массу и габариты запасов кислорода, а для замкнутых систем еще и поглотителей углекислоты и блоков системы охлаждения.


Несмотря на достигнутые с того времени успехи, проблема подвижности человека в скафандре до сих пор остается одной из основных.


Немного истории


Все космические скафандры принято делить на три класса:


спасательные скафандры - служат для защиты космонавтов в случае разгерметизации кабины или при значительных отклонениях параметров ее газовой среды от нормы;

скафандры для работы в открытом космосе на поверхности космического корабля или вблизи его;

скафандры для работы на поверхности небесных тел.


Существуют и универсальные скафандры, они могут использоваться и как спасательные и при выходе в открытый космос.


Первые космические скафандры, использовавшиеся при полетах на кораблях «Восток», представляли собой чисто спасательное снаряжение, причем многоцелевое. Они могли обеспечить защиту космонавтов в случае разгерметизации кабины, при катапультировании на заключительном этапе спуска и при возможном последующем приводнении. Кстати, такой универсальностью, стремлением (космический костюм приспособить ко всем возможным условиям полета объясняется значительная сложность и громоздкость первых космических скафандров. Вспоминается, что, отправляя в полет Ю. А. Гагарина, его сначала облачали в толстую теплозащитную одежду с системой вентиляции и затем только надевали сам скафандр. Поверх скафандра надевались различные приспособления на случай попадания космонавтов в воду, в карман вкладывалась аварийная радиостанция.


При полетах, продолжительность которых не превышала нескольких суток, космонавты находились в скафандрах все время полета. Это накладывало немало серьезных дополнительных требований: нужно было предусмотреть работу в скафандре со всей аппаратурой корабля, принятие пищи и воды, пользование системой удаления отходов жизнедеятельности. В дальнейшем, в частности при полетах на кораблях «Союз», космонавты начали надевать спасательные скафандры только в особо ответственных случаях: при выведении на орбиту, стыковке кораблей, спуске с орбиты на Землю, а также, конечно, при выходе в космос.


Первый в истории выход в открытое космическое пространство совершил, как известно, в 1965 году А. А. Леонов во время полета на корабле «Восход-2». Этим было практически доказано, что человек может работать в открытом космосе. В последующие годы было осуществлено еще несколько более продолжительных выходов в открытый космос советскими космонавтами из корабля «Союз-5» и американскими астронавтами из кораблей «Джемини», «Аполлон» и орбитальной станции «Скайлэб».


Следует отметить, что основные режимы работы спасательного скафандра значительно отличаются от режимов работы скафандра, предназначенного для работы в открытом космическом пространстве. Спасательный скафандр должен быть максимально удобен для работы внутри герметичной кабины, то есть в ненадутом состоянии - лишь в аварийной ситуации автоматически происходит надув спасательного скафандра. А скафандр для выхода в космос должен быть рассчитан на непрерывную работу космонавта при внутреннем избыточном давлении. Спасательный скафандр, как правило, работает в сочетании с бортовой системой жизнеобеспечения, в то время как скафандр «для выхода» должен иметь автономную систему жизнеобеспечения, иметь АСОЖ, органически объединенную с ним.


Скафандры для комплекса «Союз» - «Салют»


Для космического комплекса, образуемого кораблями типа «Союз» и орбитальной станцией «Салют-6», было признано целесообразным иметь два различных типа скафандров. В качестве спасательного применяется максимально облегченный «мягкий» скафандр, изготовленный индивидуально для каждого космонавта. Это, по сути дела, многослойный герметический комбинезон, объединенный с мягким шлемом. Верхняя часть шлема со смотровым стеклом - откидывающаяся.


Масса скафандра не превышает 8-10 кг, толщина пакета оболочек минимальна, что дает возможность использовать его с индивидуальными ложементами амортизационных кресел, ослабляющими действие перегрузок при выводе на орбиту и спуске. Основной конструкционный элемент скафандра - внешняя силовая оболочка, рассчитанная на нагрузки, которые создает внутреннее избыточное давление. Силовая оболочка изготовлена из высокопрочного синтетического материала и снабжена рядом шарниров. Надевают этот скафандр через передний мягкий распах.


Вентиляция в спасательном скафандре осуществляется воздухом кабины, регенерируемым в бортовой системе жизнеобеспечения. При разгерметизации кабины наполнение скафандра до необходимого давления, подача кислорода, удаление углекислого газа, влаги, тепла производятся с помощью автономной бортовой системы. Для выхода в космос из станции «Салют-6» используются скафандры принципиально новой конструкции - так называемого полужесткого типа. Их основная отличительная черта - жесткий металлический корпус - кираса. Она составляет единое целое со шлемом и ранцевой системой жизнеобеспечения; рукава и оболочки штанин скафандра мягкие. Этот скафандр не надевают, в него входят сзади, через люк в кирасе. В наспинной части скафандра размещена АСОЖ, которая одновременно служит герметической крышкой входного люка.Полужесткий скафандр в мировой практике космических полетов применен впервые. В его активе такие бесспорные достоинства:


Легкость и быстрота надевания (или, точнее, «входа» в скафандр): надеть и снять подготовленный к работе скафандр можно буквально за 2-3 минуты, причем без посторонней помощи;


Удобство эксплуатации и высокая надежность: в скафандре нет внешних пневмогидрокоммуникаций, связывающих его с ранцем, где располагается АСОЖ; органы управления удобно размещены на жестком корпусе скафандра (ранее применявшиеся скафандры мягкого типа, например, скафандр кораблей «Аполлон», имели отдельный ранец с размещенной в нем АСОЖ; этот ранец надевался поверх скафандра и, естественно, был связан с ним рядом гибких трубопроводов и кабелей, которые при выходе из корабля тоже попадают в тяжелые условия открытого космоса;


Высокая герметичность: герметизация места входа в скафандр осуществляется с помощью надежного механического соединения;


Полужестким скафандром одного размера в принципе могут пользоваться космонавты разной комплекции: благодаря жесткому корпусу увеличенные зазоры между телом и оболочкой не играют большой роли, а длина эластичных оболочек (рукава, штанины) регулируется каждым космонавтом в соответствии с его ростом; полужесткие скафандры для работы в космосе постоянно находятся на борту «Салюта-6», ими может пользоваться каждый, кто прибывает на станцию.


Следует также отметить, что габариты полужесткого скафандра в рабочем режиме меньше габаритов соответствующего мягкого скафандра в надутом состоянии с надетым ранцем.


Чтобы обеспечить хорошую подвижность при избыточном давлении, скафандр снабжен герметическими подшипниками и мягкими шарнирами. Перчатки съемные, подбираются индивидуально для каждого космонавта.


Автономная система обеспечения жизнедеятельности скафандра - замкнутого регенерационного типа. Она состоит из ряда функционально связанных друг с другом систем. В их числе:


система кислородного питания с устройствами для хранения запаса кислорода и аппаратурой для регулирования и поддержания давления в скафандре;

система вентиляции и регулирования газового состава, с блоками очистки газовой среды скафандра от углекислоты и вредных примесей;

система терморегулирования;

система электрооборудования, управления и контроля работы агрегатов;

система радиосвязи.


В системе терморегулирования используется костюм водяного охлаждения - сетчатый комбинезон и шапочка с вплетенными тонкими пластмассовыми трубочками, по которым циркулирует вода, охлаждаемая в теплообменнике. Такой метод теплоотвода в отличие от применявшегося в скафандрах кораблей «Восход-2» и «Союз-5» снятия тепла с помощью вентилирующего газа обеспечивает нормальные тепловые условия внутри скафандра практически при любом уровне физической активности космонавта и в течение полной «рабочей смены». Интенсивность теплосъема регулируется самим космонавтом.


Скафандр может многократно использоваться для выхода в открытое космическое пространство. После каждого выхода можно дозаправить водой бачок контура системы охлаждения АСОЖ, заменить израсходованный блок поглощения углекислоты, дозаправить или заменить блоки с запасами кислорода. Основные системы жизнеобеспечения скафандра дублируются резервными блоками.


Работоспособность агрегатов и оборудования скафандра в условиях глубокого вакуума космического пространства обеспечивается подбором соответствующих материалов и пар трения в подвижных соединениях, применением специальных смазок, а также установкой многих агрегатов внутри корпуса скафандра.


Электропитание агрегатов скафандра, радиосвязь и передача телеметрической информации от космонавта на Землю осуществляются с помощью так называемого электрофала - специального многопроводного кабеля, связывающего системы скафандра с бортом станции «Салют-6». В атмосфере внутри скафандра при работе в космосе давление меньше, чем на Земле, а содержание в скафандре кислорода выше. Поэтому создание скафандра и АСОЖ, в частности выбор материалов, разработка конструкции элементов, приборов и агрегатов, включая электрорадиоаппаратуру, проводились с учетом повышенных требований пожаробезопасности.


Создание скафандра для выхода космонавтов в открытый космос из орбитальной станции «Салют-6» потребовало проведения большого объема исследований и экспериментальной отработки агрегатов и комплекса в целом.


В отличие от других видов космической техники, которая на заключительном этапе проверяется при беспилотных космических полетах, отработка скафандра проводится с обязательным участием испытателей в наземных условиях, максимально приближенных к натурным. В связи с этим большое внимание уделялось моделированию условий работы скафандров, АСОЖ, материалов, созданию методов отработки этого комплекса на летающих лабораториях, в специальных бассейнах (для имитации условий невесомости), в термобарокамерах, на тренажерах.


Разработка нового типа скафандра и его успешное применение на орбитальной станции «Салют-6» - это крупный шаг вперед в скафандростроении.


Испытатель входит в полужесткий скафандр, предназначенный для работы в открытом космосе; шторка, закрывающая агрегаты автономной системы обеспечения жизнедеятельности (АСОЖ), откинута.



Внешний вид полужесткого скафандра (без теплоизолирующей оболочки): 1 - мягкие асти скафандра; 2 - разъем пневмо- и гидрокоммуникаций; 3 - ручка для закрывания входного люка скафандра; 4 - карабин страховочного фала; 5 - клапан включения резервного запаса кислорода; 6 - светофильтр; 7 - жесткий корпус; 8 - гермоподшипник; 9 - пульт управления и контроля; 10 - регулятор режимов давления в скафандре; 11 - индикатор давления в скафандре; 12 - перчатка; 13 - силовой шпангоут; 14 - штепсельный разъем.



Внешний вид костюма водяного охлаждения (А) и схема распределения воды в нем (Б). 1, 2 - подводящий и отводящий шланги; 3 - сетчатый комбинезон; 4 - охлаждающие трубки.



Схемы работы типовых АСОЖ (водяное охлаждение не показано) открытого типа с выбросом в вакуум (А), с частичной регенерацией (Б) и полной регенерацией (В). 1 - блок подачи кислорода; 2 - блоки регенерации.


Типовая блок-схема АСОЖ для скафандра регенерационного типа (АСОЖ размещена в герметичном корпусе, выполненном заодно со скафандром): 1 - пульт управления и контроля; 2 - внутренняя полость скафандра и АСОЖ; 3 - влагоотделитель; 4 - теплообменник; 5 - блок поглощения углекислоты и других продуктов жизнедеятельности; 6 - вентилятор; 7 - костюм водяного охлаждения; 8 - насос; 9 - кран для регулирования температуры воды; 10 - вода замкнутого контура охлаждения; 11 - регулятор подачи воды; 12 - вода открытого контура охлаждения (отбирает тепло у воды замкнутого контура); 13 - блоки автоматики и контроля; 14 - клапан включения аварийной подачи кислорода;15 - баллон с резервным запасом кислорода; 16 - регулятор подачи кислорода; 17 - регулятор режимов давления в скафандре; 18 - основной запас кислорода; 19 - предохранительный клапан; 20 - разъем пневмо- и гидрокоммуникации; 21 - медицинские датчики; 22 - переговорное устройство.



Типовая блок-схема АСОЖ для скафандра


Некоторые элементы конструкции скафандров - варианты структуры мягкой оболочки (А), шарниров мягких частей скафандра (В, В) и гермоподшипника (Г). 1 - наружная защитная ткань; 2 - пакет слоев энранно-вакуумной изоляции; 3 - силовая оболочка скафандра; 4 - основная герметичная оболочка; 5 - дублирующая герметичная оболочка; 6 - подкладка; 7 - трубки системы вентиляции; 8 - вентиляционный зазор; 9 - костюм водяного охлаждения; 10 - нательное белье; 11 - силовая стяжка (лента, шнур, трос); 12 - поперечная складка; 13 - поперечный шнур; 14 - внешняя обойма подшипника; 15- внутренняя обойма; 16 - герметизирующий клапан; 17 - шарики.



«Наука и жизнь» №6-1978. Профессор Г. Ильин, кандидаты технических наук В. Иванов, И. Павлов.

aslan wrote in April 12th, 2017

Мало кто знает, что для советской экспедиции на Луну была полностью готова и испытана только одна компонента — космический лунный скафандр «Кречет». Еще меньше людей знают, как он устроен.


С развитием реактивной авиации всерьез встали проблемы защиты и спасения экипажа при высотных полетах. С падением давления человеческому организму становится все труднее усваивать кислород, обычный человек без особых проблем может находиться на высоте не более 4−5 км. На больших высотах необходимо добавление кислорода во вдыхаемый воздух, а с 7−8 км человек вообще должен дышать чистым кислородом. Выше 12 км легкие и вовсе теряют возможность усваивать кислород — для поднятия на большую высоту требуется компенсация давления.

На сегодняшний день существует всего два типа компенсации давления: механическая и создание вокруг человека газовой среды с избыточным давлением. Типичным примером решения первого типа служат высотные компенсационные летные костюмы — например, ВКК-6, применяемые пилотами «МиГ-31». В случае разгерметизации кабины такой костюм создает давление, сдавливая тело механическим путем. В основе такого костюма лежит довольно остроумная идея. Тело пилота опутывают ленточки, напоминающие восьмерку.

В меньшее отверстие пропущена резиновая камера. В случае разгерметизации в камеру подается сжатый воздух, она увеличивается в диаметре, сокращая, соответственно, диаметр кольца, опутывающего пилота. Однако такой метод компенсации давления является экстремальным: тренированный летчик в компенсирующем костюме может провести в разгерметизированной кабине на высоте не более 20 минут. Да и создать равномерное давление на все тело таким костюмом невозможно: некоторые участки тела оказываются перетянутыми, некоторые — вообще несдавленными.

Другое дело — скафандр, по сути, представляющий собой герметичный мешок, в котором создано избыточное давление. Время пребывания человека в скафандре практически не ограничено. Но и он имеет свои недостатки — ограничение подвижности летчика или космонавта. Что такое рукав скафандра? Практически это аэробалка, в которой создано избыточное давление (в скафандрах обычно поддерживается давление в 0,4 атмосферы, что соответствует высоте 7 км). Попробуйте согнуть накачанную автомобильную камеру. Трудновато? Поэтому один из самых охраняемых секретов производства скафандров — технология производства специальных «мягких» шарниров. Но обо всем по порядку.

«Воркута»
Первые скафандры, до войны изготавливаемые в ЛИИ им. Громова, создавались в исследовательских целях и использовались в основном для экспериментальных полетов на стратосферных воздушных шарах. После войны интерес к скафандрам возобновился, и в 1952 году в подмосковном Томилине было открыто специальное предприятие по изготовлению и разработке таких систем — Завод № 918, ныне НПП «Звезда». В течение 50х годов предприятие разработало целую линейку экспериментальных скафандров, но только один из них, «Воркута», созданный под перехватчик «Су-9», был выпущен малой серией.

Практически одновременно с выпуском «Воркуты» предприятию было выдано задание на разработку скафандра и системы спасения для первого космонавта. Первоначально КБ Королева выдало «Звезде» техзадание на разработку скафандра, целиком замкнутого на систему жизнеобеспечения корабля. Однако за год до полета Гагарина было получено новое задание — на обычный защитный костюм, рассчитанный на спасение космонавта только при его катапультировании и приводнении.

Противники скафандров вероятность разгерметизации корабля считали чрезвычайно малой. Еще через полгода Королев опять поменял решение — на этот раз в пользу скафандров. За основу были взяты уже готовые авиационные скафандры. Времени на состыковку с бортовой системой корабля уже не осталось, поэтому был принят автономный вариант системы жизнеобеспечения скафандра, размещаемый в катапультном кресле космонавта.

Оболочка для первого космического скафандра СК-1 была во многом позаимствована от «Воркуты», но шлем был сделан полностью заново. Задача ставилась предельно жестко: скафандр должен был спасти космонавта обязательно! Никто не знал, как поведет себя человек во время первого полета, поэтому система жизнеобеспечения строилась так, чтобы спасти космонавта, даже если он потеряет сознание, — многие функции были автоматизированы. Например, в шлеме был установлен специальный механизм, управляемый датчиком давления. И если в корабле оно резко падало, специальный механизм мгновенно захлопывал прозрачное забрало, полностью герметизируя скафандр.

Послойно
Скафандры состоят из двух основных оболочек: внутренней герметичной и внешней силовой. В первых советских скафандрах внутренняя оболочка изготавливалась из листовой резины методом элементарного склеивания. Резина, правда, была специальной, для ее производства применялся высококачественный натуральный каучук. Начиная со спасательных скафандров «Сокол» герметичная оболочка стала резинотканевой, однако в скафандрах, предназначенных для выхода в открытый космос, альтернативы листовой резине пока не предвидится.

«Лунный» скафандр астронавтов - участников миссий Apollo.

Внешняя оболочка — тканевая. Американцы для нее используют нейлон, мы — отечественный аналог, капрон. Она защищает резиновую оболочку от повреждений и держит форму. Лучшей аналогии, чем футбольный мяч, придумать сложно: кожаный внешний чехол защищает внутреннюю резиновую камеру от бутс футболистов и обеспечивает неизменные геометрические размеры мяча.

Провести продолжительное время в резиновом мешке никакой человек не сможет (кто имеет армейский опыт марш-бросков в прорезиненном общевойсковом защитном комплекте, поймет это особенно хорошо). Поэтому в каждом скафандре в обязательном порядке присутствует система вентиляции: по одним каналам подводится ко всему телу кондиционированный воздух, по другим — отсасывается.

По методу работы системы жизнеобеспечения скафандры делятся на два вида — вентиляционные и регенерационные. В первых, более простых по конструкции, использованный воздух выбрасывается наружу, аналогично современным аквалангам. По такому принципу были устроены первые скафандры СК-1, скафандр Леонова для выхода в открытый космос «Беркут» и легкие спасательные скафандры «Сокол».

Термос
Для длительного пребывания в космосе и на поверхности Луны потребовались регенерационные скафандры длительного пребывания — «Орлан» и «Кречет». В них выдыхаемый газ регенерируется, из него отбирается влага, воздух донасыщается кислородом и охлаждается. По сути, такой скафандр в миниатюре копирует систему жизнеобеспечения целого космического корабля. Под скафандр космонавт одевает специальный сетчатый костюм водяного охлаждения, весь пронизанный пластиковыми трубками с охлаждающей жидкостью. Проблемы обогрева в выходных скафандрах (предназначенных для выхода в открытый космос) не возникала никогда, даже если космонавт работал в тени, где температура стремительно падает до -100С.

Дело в том, что наружный комбинезон идеально выполняет функции теплозащитной одежды. Для этого впервые была применена экранно-вакуумная изоляция, работающая по принципу термоса. Под внешней защитной оболочкой комбинезона расположены пять-шесть слоев специальной пленки из особого полиэтилена, терифталата, с двух сторон которой напылен алюминий. В вакууме между слоями пленки теплообмен возможен только за счет излучения, которое переотражается обратно зеркальной алюминиевой поверхностью. Внешний теплообмен в вакууме в таком скафандре настолько мал, что считается равным нулю, и при расчете учитывается только внутренний теплообмен.

Впервые экранно-вакуумная теплозащита была применена на «Беркуте», в котором Леонов вышел в открытый космос. Однако под первые спасательные скафандры, которые работали не в вакууме, одевался ТВК (теплозащитный вентилируемый костюм), сделанный из теплого простеганного материала, в котором и были проложены вентиляционные магистрали. В современных спасательных скафандрах «Сокол» этого нет.

Помимо всего этого на космонавтов надевается хлопчатобумажное белье со специальной антибактериальной пропиткой, под которым расположен последний элемент — специальный нагрудник с закрепленными на нем телеметрическими датчиками, передающими информацию о состоянии организма космонавта.

Соколята
Скафандры были на кораблях не всегда. После успешных шести полетов «Востоков» они были признаны бесполезным грузом, и все дальнейшие корабли («Восходы» и «Союзы») проектировались на полет без штатных скафандров. Целесообразным было принято использование только внешних скафандров для выхода в открытый космос. Однако гибель в 1971 году Добровольского, Волкова и Пацаева в результате разгерметизации кабины «Союза-11» заставила снова вернуться к проверенному решению. Однако старые скафандры в новый корабль не влезали. В срочном порядке под космические нужды стали адаптировать легкий скафандр «Сокол», изначально разрабатываемый для сверхзвукового стратегического бомбардировщика Т-4.

Задача оказалась не из легких. Если при приземлении «Востоков» космонавт катапультировался, то «Восходы» и «Союзы» осуществляли мягкую посадку с экипажем внутри. Мягкая она была только относительно — удар при приземлении был ощутимый. Амортизировало удар энергопоглощающее кресло «Казбек» разработки все той же «Звезды». Формовался «Казбек» индивидуально под каждого космонавта, который лежал в нем без единого зазора. Поэтому кольцо, к которому крепится шлем скафандра, при ударе обязательно бы сломало шейный позвонок космонавта.

В «Соколе» было найдено оригинальное решение — секторный шлем, не закрывающий затылочную часть скафандра, которая делается мягкой. Из «Сокола» также убрали ряд аварийных систем и теплозащитный слой, так как в случае приводнения при покидании «Союза» космонавты должны были переодеться в специальные костюмы. Была сильно упрощена и система жизнеобеспечения скафандра, рассчитанная всего на два часа работы.

В итоге «Сокол» стал бестселлером: начиная с 1973 года их было изготовлено более 280 штук. В начале 90-х два «Сокола» были проданы в Китай, и первый китайский космонавт полетел покорять космос в точной копии русского скафандра. Правда, нелицензионной. А вот скафандры для открытого космоса китайцам никто не продал, поэтому выхода в открытый космос они пока даже не планируют.

Кирасиры
В целях облегчения конструкции и увеличения подвижности внешних скафандров существовало целое направление (прежде всего в США), изучавшее возможность создания цельнометаллических жестких скафандров, напоминающих глубоководные водолазные. Однако частичное воплощение идея нашла только в СССР. Советские скафандры «Кречет» и «Орлан» получили комбинированную оболочку — жесткий корпус и мягкие ноги и руки. Сам корпус, который конструкторы называют кирасой, сваривается из отдельных элементов из алюминиевого сплава типа АМГ. Такая комбинированная схема оказалась на редкость удачной и сейчас копируется американцами. А возникла она по необходимости.

Американский лунный скафандр был сделан по классической схеме. Вся система жизнеобеспечения располагалась в негерметичном ранце на спине астронавта. Советские конструкторы, возможно, также пошли бы по этой схеме, если бы не одно «но». Мощность советской лунной ракеты Н-1 позволяла доставить на Луну только одного космонавта, в отличие от двух американских, а облачиться в одиночку в классический скафандр не представлялось возможным. Поэтому и была выдвинута идея жесткой кирасы с дверцей на спине для входа внутрь.

Специальная система тросиков и боковой рычаг позволяли надежно закрыть за собой крышку. Вся система жизнеобеспечения располагалась в откидной дверце и работала не в вакууме, как у американцев, а в нормальной атмосфере, что упрощало конструкцию. Правда, шлем пришлось делать не поворотным, как в ранних моделях, а монолитным с корпусом. Обзор же компенсировался гораздо большей площадью остекления. Сами шлемы в скафандрах настолько интересны, что заслуживают отдельной главы.

Шлем всему голова
Шлем — важнейшая часть скафандра. Еще в «авиационном» периоде скафандры делились на два типа — масочные и безмасочные. В первом — летчик использовал кислородную маску, по которой подавалась воздушная смесь для дыхания. Во втором — шлем отделялся от остального объема скафандра своеобразным воротничком, шейной герметичной шторкой. Такой шлем играл роль большой кислородной маски с непрерывной подачей дыхательной смеси. В итоге победила безмасочная концепция, которая обеспечивала лучшую эргономику, хотя и требовала большего расхода кислорода для дыхания. Такие шлемы и перекочевали в космос.

Космические шлемы также делились на два типа — съемные и несъемные. Первый СК-1 комплектовался несъемным шлемом, а вот леоновский «Беркут» и «Ястреб» (в котором Елисеев и Хрунов в 1969 году переходили из корабля в корабль) имели съемные шлемы. Причем присоединялись они специальным герморазъемом с гермоподшипником, что давало возможность космонавту вертеть головой. Механизм поворота был довольно интересен.

На кадрах кинохроники хорошо видны шлемофоны космонавтов, которые изготавливаются из ткани и тонкой кожи. На них смонтированы системы связи — наушники и микрофоны. Так вот, выпуклые наушники шлемофона входили в специальные пазы жесткого шлема, и при повороте головы шлем начинал вращение вместе с головой, как башня танка. Конструкция была довольно громоздкой, и от нее в дальнейшем отказались. На современных скафандрах шлемы несъемные.

Обязательный элемент шлема для выхода в космос — светофильтр. У Леонова был маленький внутренний светофильтр самолетного типа, покрытый тонким слоем серебра. При выходе в космос Леонов ощутил очень интенсивное нагревание нижней части лица, а при взгляде в сторону Солнца защитные свойства серебряного светофильтра оказались недостаточными — свет был ослепительно ярким. Исходя из этого опыта, все последующие скафандры стали оборудоваться полными наружными светофильтрами с напыленным довольно толстым слоем чистого золота, обеспечивающего пропускание всего 34% света. Самая большая площадь остекления — у «Орлана».

Причем на последних моделях есть даже специальное окошко сверху — для улучшения обзора. Разбить «стекло» шлема практически невозможно: делается оно из сверхпрочного поликарбоната лексана, который также используется, например, при остеклении бронекабин боевых вертолетов. Однако и стоит «Орлан» как два боевых вертолета. Точную цену не называют, но предлагают ориентироваться на стоимость американского аналога — $12 млн.

Проектировать первые высотные скафандры, создающие вокруг человека среду с избыточным давлением по отношению к окружающей атмосфере, начали еще в 1930-е годы. Тогда их изобретали для полетов человека на стратостатах (высотных воздушных шарах). Сейчас существует всего три «ателье», где делают скафандры. Находятся они в России, США и Китае.

РОССИЙСКИЙ СКАФАНДР

Скафандр «Орлан-МК» производится ОАО «НПП „Звезда“» имени академика Г.И. Северина» (Московская область). Это пятая модификация отечественных скафандров, она оборудована встроенной компьютеризированной системой. Используется на МКС.
1. Шлем имеет светофильтр с золотым напылением - для защиты от солнечного света. Внутри шлема встроена «Вальсальва» - устройство для продувки ушей при изменениях давления в скафандре (выглядит как маленькая подушечка с двумя бугорками, которые, если в них упереться, зажимают нос).
2. Рукава и штанины съемные и могут регулироваться по длине. Внутри внешней части костюма - кираса (жесткий металлический корпус).
3. Перчатки изготавливаются по индивидуальным меркам и имеют термоизолирующие подкладки, чтобы не мерзли руки.
4. Электрофал - провод, по которому в скафандр поступает электричество, когда космонавт еще находится на борту.
5. Электронный блок управления. Надписи на блоке нанесены в зеркальном отражении, чтобы космонавт мог читать их с помощью надетых на рукава зеркал 6.
7. Кнопка входа в меню блока управления и отключения аварийного сигнала.
8. Ранец системы жизнеобеспечения. Содержит основную и запасную системы снабжения кислородом и блок коммуникаций.
9. Светодиоды. Оповещают космонавта в аварийных ситуациях (при утечке, проблемах с вентиляцией, кислородом и пр.).
10. Крепление троса, закрывающего люк скафандра на спине. Через этот люк космонавт попадает в скафандр.
Вес - 114 кг, внутри скафандра поддерживается постоянное давление в 0,4 атмосферы.
Время работы системы жизнеобеспечения скафандра в одном цикле (от надевания до снятия) - 10 часов (из них 7 часов отводится на работу в открытом космосе, остальное время - на нахождение в отсеке перед выходом в космос и после возвращения).
Внешняя оболочка скафандра - ткань фенилон, способная выдерживать значительные статические и динамические нагрузки и многослойная экранно-вакуумная теплозащита, состоящая из алюминиевой фольги и минеральных волокон.

СКАФАНДР США

Костюм для выхода в открытый космос EMU (Extravehicular Mobility Unit) производится компанией ILC Dover, системы жизнеобеспечения поставляются Hamilton Standard. Первая версия EMU использовалась с 1979 по 2002 год, в настоящее время в эксплуатации ее модернизированный вариант. Стоимость одного скафандра - 12 млн долларов.
1. Шлем имеет светофильтр с золотым напылением - для защиты от солнечного света. Шлем соединен трубкой с контейнером воды объемом 0,95 литра.
2. Светодиоды - необходимы для работы на теневых участках.
3. Блок управления и контроля, включающий регуляторы температуры, поступления кислорода и связи. Надписи на блоке нанесены в зеркальном отражении, чтобы космонавт мог читать их с помощью вшитых в рукава зеркал.
4. Ранец системы жизнеобеспечения, содержащий основную и запасную системы снабжения кислородом и блок коммуникаций.
5. Система обеспечения кислородоом. Наряду с основной существует аварийная, запаса которой хватает на 30 минут.
6. Перчатки с подогревом. Позволяют сохранять чувствительность пальцев за счет прорезиненных элементов.
7. Видеокамера.
8. Страховочный карабин.
Вес - 178 кг, внутри скафандра поддерживается постоянное давление в 0,3 атмосферы.
Время работы в открытом космосе - до 7 часов.
Скафандр состоит из 14 слоев (в том числе нейлон, неопрен, синтетическое полиэфирное волокно и термопластик) и способен выдерживать перепады температуры от –184 до +149 градусов Цельсия.

Похожие публикации